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ABSTRACT

This document describes the progress of the Quality In Automation (QIA) program of the

Manufacturing Engineering Laboratory (formerly the Center for Manufacturing Engineering) at

the National Institute of Standards and Technology (NIST) for fiscal year 1990. The purpose

of the QIA program is to develop a quality control and assurance system that exploits

deterministic manufacturing principles in small-batch automated manufacturing using

commercially available and affordable equipment. The foundation of the program is a quality-

control architecture that uses multiple feed-back loops to control the process. Currently, we

are implementing three control loops: real-time control, process-intermittent control, and post-

process control loops.

During fiscal year 1990 work concentrated on the real-time and the process-intermittent

control loops. The Real-Time Error Corrector (RTEC) was integrated into the real-time control

loop. Its ability to modify the tool path-without any intrusion into the machine tool’s CNC

controller-during cutting was demonstrated for the first time. High-speed, on-machine part

inspection using the fast-probing capability of the RTEC was also demonstrated as an integral

part of the process-intermittent control loop. Preliminary testing has been done to evaluate

the methodology for using errors determined by process-intermittent gauging, I.e., fast

probing, to alter the tool path of the finishing cut by modification of NC part-program

coordinates. Coordinated operation of both the real-time and the process-intermittent control

loops has been demonstrated under the supervision of the turning center’s Quality Controller

(QC) running in a high-level language environment. As a part of the post-process control

loop, an automated inspection system using the Dimensional Measurement Interface

Specification (DM IS) and the Initial Graphics Exchange Specification (IGES) national interface

standards to Integrate Computer Aided Design/Computer Aided Manufacturing (CAD/CAM)

software with a Coordinate Measuring Machine (CMM) has become operational.

This program is funded jointly by the U.S. Navy’s Manufacturing Technology Program in

support of the research at the Automated Manufacturing Research Facility (AMRF) at NIST,

by private industry In the form of equipment and necessary software support, and by NIST.
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1. INTRODUCTION

M.A. Donmez and K.W. Yee

This report describes the progress of the Quality in Automation (QIA) program of the

Manufacturing Engineering Laboratory (formerly the Center for Manufacturing Engineering) of

the National Institute for Standards and Technology (NIST) for fiscal year 1990. The purpose

of the QIA program is to develop a quality control/quality assurance system that exploits

deterministic manufacturing principles in small-batch automated manufacturing using

commercially available and affordable equipment. Deterministic manufacturing is based on

the premise that most errors in the manufacturing process are repeatable and predictable and

therefore can be compensated. Thus, quality can be assured by controlling both the

manufacturing process and the equipment used in this process. The program combines

statistical process control methods with on-machine sensing and gauging, real-time error

compensation and distributed processing to produce quality parts.

Prior work has been described in the progress reports for the QIA program for fiscal years

1988 and 1989 [1 ,2]. The foundation of the program Is a quality-control architecture that

uses multiple feed-back loops to control the process as shown in Figure 1.1. There is a real-

time loop, a process-intermittent loop and a post-process loop.

The function of the real-time control loop is to monitor the machine tool and the metal-cutting

process and to modify the tool path, feed rate, and the spindle speed during cutting in order

to achieve higher accuracy and surface quality of the workpiece. Monitoring can be done

using various sensors incorporated Into the machine tool such as position, temperature,

vibration, audio and ultrasonic sensors. Real-time error compensation Is achieved by

implementing tool-path modification of the machine using a combination of kinematic and

geometric-thermal (G-T) models of the machine-tool errors. The G-T model is derived from

the pre-process machine characterization measurements. The kinematic model is

constructed, based on the machine structure, using the theory of rigid body kinematics to

describe the relative relationships between machine elements. The required correction to

compensate for the resultant error, which Is calculated using these models, is implemented

by the Real-Time Error Corrector (RTEC). The RTEC is a microcomputer-controlled device



Figure 1 .1

which is inserted between the position feedback device for each axis and the machine tool

controller. It alters the feedback signal to cause the machine to go to a slightly different

position to compensate for the predicted errors. The feed-rate and the spindle-speed

modifications will be made either to minimize the vibration and chatter during cutting, or to

optimize surface finish.

The functions of the process-intermittent control loop are 1 ) to determine workpiece errors

introduced by the machining process which cannot be compensated by the real-time control

loop and 2) to correct for them by generating modified NC part program and/or tool

dimension offsets for the finishing cut. On-machine dimensional and shape measurements of

the workpiece are performed (between semifinishing and finishing cuts) using fast probing.

Fast probing is a gauging method which uses a touch-trigger probe at feed rates 1 0 to 20

times higher than is currently used.

The functions of the post-process control loop are to verify the cutting process and to tune

the two other control loops by detecting residual systematic errors In the process and

generating corrective actions. Process verification, over a period of time, is done by
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inspecting the features of finished parts independently using a coordinate measuring machine

(CMM). The errors measured on similar features, e.g., circles, are then correlated back to

machine tool errors and the process parameters. Systematic residual errors will be used to

determine modifications to the algorithm used in the process-intermittent control loop to alter

the finishing cut based on the errors detected by on-machIne gauging. In the long term,

systematic errors of geometric features measured In the post-process control loop will be

used 1 ) to modify the geometric-thermal model used In the real-time control loop or 2) to

indicate that the pre-process characterization of the machine tool geometric errors needs to

be revised.

The QIA architecture is being tested on a Monarch VMC-75 Vertical Machining Center with a

GE-2000M CNC controller and a Monarch Metallst Turning Center with a GE-2000T CNC

controller. The post-process control loop uses a Sheffield Apollo Series Cordax CMM. Each

machine tool and the CMM has a PC-compatible computer called the Quality Controller (QC).

At each machine tool, the QC is interfaced to the RTEC. Using the geometric-thermal model

and a kinematic error model of the machine structure, the QC calculates the resultant error

vector. This is converted to corrections required for each axis in units of correction counts

and sent to the RTEC. The RTEC Implements these corrections as fast as possible and

reports the current correction status back to the QC. In the process-intermittent control loop,

the QC receives the trip-point axes positions from the RTEC and stores this data. When

probing Is complete, the QC determines the shape and the dimensions of the gauged part

and calculates the modification to the tool offsets or NC-part program coordinates to be used

for the finishing cut. For the post-process control loop, the PC at the CMM is used off line to

generate the Inspection program in a Dimensional Measuring Interface Standard (DM IS)

format. The Inspection results are reported back to the PC in DM IS format for analysis.

Complete understanding of the system requires a review of previous work reported in [1, 2].

The following sections of this report describe the progress of the project during FY90. For

the real-time control loop, the geometric-thermal machine characterization measurements for

each axis have been completed for both machine tools. Errors associated with thermally

Induced spindle growth of the machines remain to be determined. Development of the G-T

models is underway for both machines. The RTEC was Integrated into the real-time control
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loop of the QIA architecture. Its capability to modify the tool path - without any intrusion into

the machine tool’s CNC controller - during cutting was demonstrated for the first time in the

past year. High-speed, on-machine part inspection using the fast probing capability of the

RTEC was also demonstrated as an integral part of the process-intermittent control loop.

Preliminary testing has been done to evaluate the methodology for using errors determined

by process-intermittent gauging to alter the tool path of the finishing cut by modification of

NC part-program coordinates. Again for the first time, a coordinated operation of both the

real-time and the process-intermittent control loops has been demonstrated under the

supervision of the turning center’s QC running in a high-level language environment, AMPLE.

As a part of the post-process control loop, an automated inspection system using DM IS and

the Initial Graphics Exchange Specification (IGES) national Interface standards to integrate

Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) software with a CMM

has become operational.

After completing the final integration of the real-time and the process-intermittent control

loops for the turning center in the fiscal year 1 991 ,
the effort will be focused on the post-

process control loop of the QIA architecture. The specific tasks of this effort are development

of a feature-based Quality Database, development of a Quality Monitor, and Integration of the

Quality Database with the Quality Monitor. The Quality Database will be used to store all the

information about the parts produced in the system based on their specific features. Such

information will likely consist of: the errors found In these features, the machine axes, cutting

tools, and cutting parameters used in producing these features, as well as other sensory

information obtained during cutting. Examples of sensory information include temperature

profiles, vibration signatures, and on-machine probing data. The Quality Monitor will be

designed to sort this information stored in the Quality Database to identify the residual

systematic errors in the process and generate corrective actions.

This program is funded by the U.S. Navy in support of the research at the Automated

Manufacturing Research Facility (AMRF) at NIST, by private industry in the form of equipment

and necessary software support, and by NIST.
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2. CHARACTERIZATION OF THE VERTICAL MACHINING CENTER

F.F. Rudder, Jr.

2.1. INTRODUCTION

The two previous progress reports of the Quality In Automation (QIA) project described the

initial phases of the pre-process machine tool characterization effort carried out for the vertical

machining center [1,2]. The critical steps were the thermocouple installation on the machine

structure; the development of the data acquisition system and related software; the

development of the error measurement procedure for the x- and the y-axes; and the

measurements. During the past year we have developed measurement procedures to

characterize the geometric and thermal errors of the z-axis. Following these procedures, we

have completed the acquisition of the z-axis error data. Initial statistical analyses for

generating the geometric-thermal error (G-T) model of the machine were also carried out in

the past year. As a part of machine characterization, errors related to exchanging tools and

the effect of drift on updating tool-length offsets were measured.

2.2. MEASUREMENTS

As described in the earlier QIA reports, the

primary objective of the machine

characterization measurements is to acquire

geometric error data at various thermal

states of the machine tool representative of

machining conditions. All the

characterization measurements must be

referenced to the Initial thermal state of the

machine tool.

Figure 2.1 illustrates the axis configuration

of the vertical machining center and

identifies the major components. Since we



utilize laser Interferometry as the primary metrology tool, we must maintain an uninterrupted

path for the laser beam in order to reference all measurements to the initial "zero" position.

Using spindle-mounted optics, this requirement is not too restrictive for the x-axis and the y-

axis measurements. However, for the z-axis measurements, careful attention is required to

obtain meaningful data as described in the next sections.

2.2.1. Machine Thermal State

Our previous

measurements of

the thermal state of

the machining

center identified

high-speed spindle

rotation as the

most significant

operation affecting

the temperature

distribution of the

z-axis quill and the

machine-tool head

and column. For

spindle-mounted

optics, the laser

beam cannot be

maintained for any

of the angular or

straightness

measurements. However, if the optics are properly aligned using a spindle-mounted corner

cube, an unbroken laser path can be maintained for the z-axis linear-displacement error

measurements. Hence, for the z-axis linear-displacement error measurements, we followed

the procedure similar to the one we used in the x- and y-axes measurements. However, for
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TABLE 2.1

Thermocouple Locations on Monarch VMC Machining Center

NO. LOCATION

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

35

36

37

38
39

Left (Viewed from operator position) Side of X-(Glass) Scale

Upper Spindle Bearing on the Quill

Lower Spindle Bearing on the Quill

Right of X-Scale

Front of Y-Scale

Middle of Y-Scale

Rear of Y-Scale

Bottom of Z-Scale

Top of Z-Scale

Bottom of W-Scale

Top of W-Scale

Left End of X-Way
Right End of X-Way
Front of Left Y-Way
Rear of Left Y-Way
Front of Right Y-Way
Rear of Right Y-Way
Near Mount for Z-Scale Reader

Near Mount for W-Scale Reader

Near Coolant Nozzle

Outboard of Bottom of Left W-Way
Outboard of Bottom of Right W-Way
Outboard of Middle of Left W-Way
Outboard of Middle of Right W-Way
Outboard of Top of Left W-Way
Outboard of Top of Right W-Way
Bottom Front of Left Side of Column
Bottom Rear of Left Side of Column
Middle Front of Left Side of Column
Middle Rear of Left Side of Column
Top Front of Left Side of Column
Top Rear of Left Side of Column
Bottom Front of Right Side of Column
Bottom Rear of Right Side of Column
Middle Front of Right Side of Column
Middle Rear of Right Side of Column
Top Front of Right Side of Column
Top Rear of Right Side of Column
Coolant Tank
Hydraulic Tank
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the angular and straightness measurements, we could only measure data for the "cold"

machine state and for the "cool-down" machine state. Between these two states, we

conducted a warm-up cycle of several hours’ duration to reach the "hot" machine state.

Since the warm-up cycle required high-speed spindle rotation, the laser optics were removed

from the spindle during warm up. Hence, the laser zero was lost between data collected for

the "cold" machine state and the "cool-down" machine state.

In the following discussion, we present temperature data identified by specific thermocouple

locations. Figure 2.2 Illustrates the general location of the thermocouples. Table 2.1

presents a description of each thermocouple location.

Figures 2.3 and

2.4 represent the

output of sample

thermocouples

during the

geometric error

measurements for

the z-axis. Figure

2.3 shows the

thermal response

during z-axis

linear-

displacement error

measurements.

The "saw tooth" shape observed In quill temperature is caused by cool-down during the time

spent for the laser measurements between the periods of warm-up.

Figure 2.4 presents data taken during the z-axis straightness measurements. The first few

points represent the cold machine state. The straight-line portion of the graph represents the

machine warm-up period during which the optics were removed from the spindle. The

remainder of the graph corresponds to data measured during the machine cool-down period.

Figure 2.3
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2.2.2. Geometric Error Data

Figure 2.5

presents a

summary of the

geometric error

data for the three

axes of the

machining center.

This figure is

presented to place

the order of

magnitude of each

error in

perspective. For

these plots, the

horizontal scale is the position of the respective machine tool axis. The vertical scale Is the

measured error. We use the fixed-range format in order to emphasize the relative magnitudes

of the linear and the angular data. The glass scale temperature ranges of the respective axes

are printed on each plot to Indicate the similarity of machine-tool thermal state for all the

measurements. The following conclusions may be reached by obsen/ing Figure 2.5:

• For all axes, linear-displacement errors are dominant and are temperature-dependent.

• Excepting the y-straightness of the x-axis, the magnitude of all other straightness

errors are on the order of 1 0% or less than the magnitude of the linear-displacement

errors.

• For the angular data, x-axIs yaw and z-axis pitch exhibit the most variation.

The full size plots of errors correspond to the x- and the y-axes were given in the FY89

progress report [2]. The ones corresponding to the z-axis are included in Appendix A.

TEMPERATURE [Degrees C]

Figure 2.4
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Figure 2.6

Figures 2.6 through 2.8 are plots of linear-displacement error for the x-, y-, and z-axes,

respectively, versus the time. In each figure, four curves are presented: one curve for each

axis’s extreme position and two curves for a mid-axis position. It is seen that the error

change Is gradual for x- and y-axes warm-up and more pronounced for the cool-down state.
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Z-AXIS LINEAR DISPLACEMENT ERROR [ulN]

Figure 2.8

Figures 2.9 through 2.11 are plots of linear-displacement error for the x-, y-, and z-axes,

respectively, versus the response of a selected thermocouple. Again, four cun/es are

presented for each axis corresponding to the two extreme positions and two for a mid-axis

position.

X-AXIS LINEAR DISPLACEMENT ERROR [ulN]

Figure 2.9
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Figure 2.12 shows the difference in the error behavior during the warm-up and the cool-down

cycles. This difference is an important consideration for any error compensation strategy that

requires an interruption of the machining process. If the machine tool Is idle for a period of

time, the error behavior will follow a different pattern than the one during the warm-up cycle.

13



If the magnitude of the difference between the two modes of operation is significant relative to

the desired

precision of the

machining

process, then the

compensation

must include this

effect. The

possibility that the

error may depend

upon the rate of

change of

temperature as

well as the

magnitude of the

temperature should be investigated through the statistical analyses.

2.3. STATISTICAL DATA ANALYSIS

The objective here is to develop a geometric-thermal (G-T) model for the measured errors of

the machining center. Using this empirical model, one determines the compensation based

upon measurement of selected thermocouples and the nominal axes’ positions during the

machining process. To develop the G-T model two main steps must be taken. The first step

Is determining the thermocouples that are best correlated to the measured error. The second

step is fitting a mathematical model to the data using the selected thermocouples. Our effort

in developing the model has indicated that to identify significant thermocouples a

consideration of the range of the temperature values as well as the direct correlation

calculation are required.

In attempting to determine statistically significant correlations between a geometric error, axis

position, and temperature, we have implemented the following analysis procedure. We first

determine the best statistic relating the error to the axis position and then correlate this

Z-AXIS LINEAR DISPLACEMENT ERROR [uIN]

Figure 2.12
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statistic to the temperature data. As a result of this correlation we order the temperature

locations by rank, based on the computed correlation coefficients. In correlating position

error data to temperature data that spanned a narrow temperature range, the correlations

may be very high although the result is not statistically significant for the particular error

estimate. Therefore, we determine the temperature range of the data for the most highly

correlated thermocouples and reject thermocouples that exhibit a high correlation but are

associated with a narrow temperature range. As a final step, we conduct a multivariable

regression between the error data, the axis position, and the temperature data that are highly

correlated and exhibit the widest range of temperature.

Figure 2.13 illustrates a plot of

rank-ordered thermocouples with

the upper half of the vertical

scale indicating the correlation

coefficient and the lower half

indicating the range of the

temperature data. The number

above each bar is the

thermocouple ID number.

Hence, we would consider

thermocouple numbers 0, 3, 11,

1 2 and 4 to include in the data fit

and reject thermocouple

numbers 39, 18, 31, and 36. The

data In Figure 2.13 are for x-axis

linear-displacement error measurements and thermocouples 0 and 3 are at opposite ends of

the x-axIs glass scale and 1 1 and 1 2 are at opposite ends of the x-axIs slideways.

Thermocouple 4 is at the end of the y-axis glass scale nearest the x-axIs scale.

Thermocouples 39, 18, 31 ,
and 36 are for locations on the machine-tool column and, in

addition to the narrow temperature range, there is no physical reason to expect that such

small temperature variations could result in significant position errors for this measurement.

15



Based upon a multiple variable least-square data fit, the following preliminary model was

established for the x-axis linear-displacement error^

= A -H Bx -H CT3 -I- DT4 + Ex*T3 + Fx*!^, pm (2 . 1
)

where x is the x-axis nominal position

Range: 0.0 < x < 1003 mm (39.5 inch)

T3 Is the temperature from Thermocouple 3

(end of x-axis glass scale)

Range: 23°C < T3 < 30°C

T4 is the temperature from Thermocouple 4

(end of y-axis glass scale closest to x-axis scale)

Range: 23°C < T^ < 26°C

TABLE 2.2

Regression Results for the X Displacement Error Data

Parameter Estimate Std. Error Units

A -163.004 8.45 pm

B -41.7385 15 pm/m

C -5.21057 0.225 iim/°C

D 1 1 .84595 0.5 pm/°C

E 16.1326 1 pm/m/°C

F -13.604 1 pm/m/°C

^This analysis was conducted with the cooperation of NIST Statistical Engineering

Division

16



2.4. COMPARISON OF PREDICTIONS TO MEASUREMENTS

In order to evaluate the ability of the above model to predict the x-axis linear-displacement

error, we compare the output of the model to our measurements. The temperature values for

thermocouples 3 and 4, as well as the nominal x position are used as input parameters to the

model. The comparison is carried out for three sets of error data as follows:

1) The data set used to develop the above model. (These data were measured for a

value of y= 254 mm (10 in) which is a mid-table location.)

2) A data set taken at a distinctly different ambient temperatures.

3) A data set of measurements taken at three different y-axis locations for the table.

First, we compare

our model to the

measurements

used to develop

the model. Figure

2.14 shows a plot

of the

temperatures

measured by

thermocouples 3

and 4 during the x-

axis linear-

displacement error

measurements. In

this figure, we have marked four sets of measurements corresponding to: beginning, middle,

and end of the warm-up period as well as the middle of the cool-down period. Each set of

three data points on this plot shows the beginning and end temperatures for individual

measurement passes, as well as the average of these two temperatures.

Figures 2.15 through 2.18 are plots of x-axis linear-displacement error versus x-axis position

TEMPERATURE [Degree C]

TC [ 3] ^ TC [ 4 ]

Figure 2.14
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for the above-

mentioned

temperature

conditions. Each

of these figures

presents the

measured error

values with two

V iues presented

for each x-axis

position. These

two error values

correspond to

fonvard and

Figure 2.15

reverse directions of x-axis motion. Two solid lines are plotted corresponding to those two

directions. The solid lines are linear least-square curve fits obtained using only the data

plotted in the

figure. The

dashed lines in

these figures are

derived from the

above-presented

model using the

average

temperatures of

thermocouples 3

and 4 as logged at

the start and the

end of the

measurement.

3000

2000

1000 -

X-AXI3 LINEAR DISPLACEMENT ERROR. ulNOH

1000
10 16 20 25

X-AXIS POSITION, INCHES

30 36 40

Er[->]09 Er[<-]09 Er[T3=27.9J4=24.2]

Figure 2.16

The model does not take the direction of motion into account, it averages the effects

attributable to the backlash. This model is at least as good a predictor for ail data as a linear

18



model based upon each individual data set.

Figure 2.17

Figure 2.18

The above comparison was between the model and the data used to develop the model. We

have also compared the model to a totally independent set of measurements. The

measurements were conducted seven months subsequent to the data presented in Figures
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2.15 through 2.18 and represent approximately a one degree Celsius increase in the ambient

environment of the

machine tool.

Figure 2.19

presents the

temperature

response of

thermocouples 3

and 4 during the

measurements.

Comparing this

plot with Figure

2.14, we see that

the cun/es in

Figure 2.19 are

initially one degree Celsius above the cun/es in Figure 2.14. Figure 2.20 is the plot of x-axIs

linear-displacement error versus x-axis position for the cold machine condition Indicated in

Figure 2.19 and

we see that the

model described in

Equation 2.1

(dashed line) fits

the measured data

quite well. (Figure

2.20 corresponds

to Figure 2.15.)

Comparing the

model to

subsequent data

sets within the

measurements

indicated in Figure 2.19 yields results similar to those presented In Figures 2.15 through 2.18.

TEMPERATURE [Degree C]

— TC [ 3] TC [ 4]

Figure 2.19
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The conclusion is that the current model provides estimates of the position error under typical

changes in the ambient environment within 25 pm (0.001 in). Future improvements in this

model will take into account the direction of motion of the axes.

We now compare the model to data taken along the x-axis at three different table positions

for the y-axis. This experiment comprised three sets of x-axis linear-displacement error data.

Each set corresponds to a y-axis position of the machine tool table of y=127 mm (5 in),

y=254 mm (10 in), and y=381 mm (15 in). These data were taken by independent

measurements during machine warm-up and cool-down cycles using identical procedures.

The model described above was developed using data obtained at y=254 mm (10 in) table

position. It was used to compare with the data taken at different y-axis positions - the form

of the comparison is to calculate the difference between the model prediction and the

measured values. This difference or residual may then be used to characterize the predictive

ability of the model. One such characteristic Is the median value of the difference between

the prediction and the ten data points measured at different temperatures at each (x,y)

location of the table. Figure 2.21 presents a three-dimensional plot of this calculation. Here

we see that the median of the residuals for all (x,y) locations and temperatures is within a

band of approximately -13 ^m (-0.0005 in) to -1-25 ^m (-1-0.0010 in).
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2.5. OTHER OPERATIONAL ERRORS

We have investigated the variation of tool-length offsets that may be due to nonthermal effects

[3]. First, we compared manually measured master-gauge length with the magnitude of

z-axis drift measured using laser interferometry. Since the tool-length offset Is measured

using a read-out of the z-axis position, we should observe a change in the master-gauge tool

length comparable to the z-axis drift during a warm-up cycle. As illustrated in Figure 2.12, the

z-axIs linear-displacement error changes almost 25 jim (1 CXX) jiln) during the first 30 minutes

of machine cool-down. Following a two hour warm-up with the spindle rotating at 3500 rpm,

we measured the master-gauge tool length 32 times during a 25 minute period. The master

gauge remained in the spindle during warm-up and during the measurements. The

measured gauge length varied approximately 30 ^im (1300 pin).

Next, we used the tool-length offset program resident in the machine tool controller to

observe the variation of tool-length offset of an end mill. This resident program is machine-

specific and utilizes a table-mounted tool setting station. The length offset of the end mill is

relative to the master gauge length which is also measured each time the program is

executed. However, the master gauge and the end mill are mechanically exchanged between

a tool carousel and the spindle. Hence, our observations Include any variation attributable to

both thermal drift and repeatability of the tool adaptor In the spindle.

We conducted both master-gauge measurements and end-mill measurements for three

thermal states of the machining center: cold machine (idle over night), warm machine (two

hour high-speed spindle warm-up), and a cool machine (90 minutes following the warm

machine measurements). From these measurements, we concluded that the mean value of

the master-gauge tool length was not different for the cold machine and the cool machine,

but was different for the warm machine. For the end-mill tool-length measurements (which

are relative to the master-gauge length), we could not establish any statistically significant

difference between the mean values of the end mill-length for the three different thermal

states of the machining center. However, the standard deviation of the measured end mill

lengths was varied from 14 ^m (550 jiln) to 19 ^m (750 \i\n) and most likely was caused by
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the tool exchange operation.

In summary, we observe similar variation of the z-axis position both with the laser

measurements and the tool-length measurements. This variation represents a shift in the

mean value and may be compensated by an empirical error model or, possibly, in-process

gauging. The variation that may be attributable to tool exchange appears to be on the order

of 14 urn to 19 pm. This variation represents a random error component that may be

realized during machining operations that cannot be corrected solely by introducing z-axis

compensation for thermal drift.

2.6. FUTURE WORK

The measurement data and related records described above have been archived. Reports

are in preparation describing the methodology used, the data obtained, and the analysis

results achieved for characterization of the vertical machining center. These reports will be

published separately during this reporting period.
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3. IMPLEMENTING REAL-TIME CONTROL FOR TURNING CENTER

M.A. Donmez, K.W. Yee, D.H. Neumann, and L Greenspan

3.1. INTRODUCTION

This chapter presents the work done during the past year on the turning center to implement

the real-time control loop. The two main functions of the real-time control loop are 1 ) to

monitor both the machine tool and the cutting process during the metal removal operation,

and 2) to predict and compensate for the machine tool systematic errors. A critical task for

the prediction of the systematic errors Is to build the geometric and thermal (G-T) error model

of the machine. The second task is to modify the cutting-tool’s path, during the actual

machining, based on the error prediction from the evaluation of the G-T model for the current

tool position and temperature profile of the machine. This task will be Implemented by the

Real-Time Error Corrector (RTEC) as described in the Pt'SQ QIA Progress Report [2].

In the following sections, we describe the final stage of the machine characterization effort,

which is the analysis of the raw geometric and thermal data to build the G-T model. Then,

we describe the software module being developed for the Quality Controller (QC) of the

turning center. The purpose of this module is to combine the G-T model and the machine

kinematic model in order to implement the error prediction In real time. Finally, we describe

the tests designed and carried out during the year for the evaluation of the RTEC’s real-time

tool-path modification performance.

3.2. MACHINE CHARACTERIZATION

3.2.1. Overview

We continued the characterization of the turning center’s quasistatic and thermally Induced

geometric errors. As a parallel effort to the work being done for the vertical machining center

characterization, a statistical data analysis procedure was developed for the turning center

and used to establish error functions with respect to machine positions and the temperature

profile. Our premise is that the error functions are continuous, and the error values are slowly



changing with respect to positions and temperatures. In addition, from a previous

investigation we found that the cause and effect relationship between structure temperature

and the resultant error Is relatively simple [4].

3.2.2. Data Analysis

The machine-

characterization

raw data consists

of a series of error

values taken at

each measuring

interval while a

particular machine

slide was moved

back and forth

along Its axis of

motion. The

temperatures at 36

locations around

the machine

structure were

taken before and

after each

bidirectional run.

Hydraulic tank 19

Ballscrew housing 38

2 nut 39

Monarch Metalist

Turning Center

Thermocouple locations for machine
characterization

36 thermocouples
• Also on opposite end

Figure 3.1

Figure 3.1 shows the temperature measurement locations on the machine. The descriptions

of these locations are given In Table 3.1. The procedure for the data acquisition used for the

machine characterization was explained in detail In the Progress Report of the Quality In

Automation Project for FY89 [2]. A sample plot of the raw data obtained from the z

displacement error measurements is shown in Figure 3.2. The apparent nonrepeatability of

the data is due to the changes in the temperature profile of the machine.
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TABLE 3.1

Thermocouple Locations on Monarch Metalist Turning Center

NO. LOCATION

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32
33

34

35

36

37

38

39

Bottom of X-(Glass) Scale

Top of X-Scale

Coolant Tank
Ambient

Not Used
Not Used
Top Right of Bed
Right of Z-Scale

Right Center of Z-Scale

Left Center of Z-Scale

Left of Z-Scale

Top of X-Way
Bottom of X-Way
Top of X-Head
Bottom of X-Head
Bottom of Z-Slide

Top Left of Z-Slide

Bottom Right of Z-Slide

Top Right of Z-Slide

Hydraulic Tank
Left End of Lower Z-Way
Left End of Upper Z-Way
Right End of Lower Z-Way
Right End of Upper Z-Way
Lower Front of Spindle Head
Lower Rear of Spindle Head
Upper Front of Spindle Head
Upper Rear of Spindle Head
Left of Top of Spindle Head
Middle of Top of Spindle Head
Right of Top of Spindle Head
Bottom Left of Bed
Top Left of Bed
Bottom Right of Bed
Not Used
Near X-Drive Motor Shaft Bearing

Left Z-Ballscrew Bearing

Right Z-Ballscrew Bearing

X-Ballscrew Housing

Z-Ballscrew Nut
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We started the

data analysis by

normalizing the

error values at

each nominal

position with

respect to the

measured error at

the starting

position of each

bidirectional run.

Figure 3.3 shows

the normalized

version of the

same data shown

in Figure 3.2.

Since the error

data is direction

sensitive due to

backlash and other

reversal errors, we

separated the data

directionwise Into

two groups.

Figures 3.4 and

3.5 show two sets

of curves

corresponding to

the forward and

the reverse

directions

respectively.

Z Displacement Error
(Normalized Data)

Figure 3.3
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For each nominal

position, we had

one set of error

data for the

forward direction

and one set for the

reverse direction.

By interpolating

the temperature

values before and

after each

bidirectional run,

we calculated

temperature values

corresponding to

each nominal

position. Then, for

each nominal

position we carried

out a linear fit of

error with respect

to temperature at

each temperature

measurement

location. We then

ordered these

locations with

respect to the

goodness of the fit

in order to select

the best

temperature

Z Displacement Error

Figure 3.4

Z Displacement Error

Nominal Z Position [Inches]

Figure 3.5

29



locations to be monitored for error prediction. Table 3.2 shows a sample result from such a

fit carried out for the nominal position of 356 mm

TABLE 3.2

Linear Regression Fits of Z Dispiacement Error as a Function of Different Temperatures
(at position Z=356 mm; forward direction of motion)

THERMOCOUPLE NO. STANDARD DEVIATION (tim)

12 0.86

15 0.86

14 0.89

17 0.91

22 0.95

33 0.95

38 0.97

11 0.99

18 0.99

16 1.0

35 1.1

1 1.1

0 1.1

20 1.2

32 1.3

31 1.33

25 1.47

29 1.48

30 1.49

28 1.52

6 1.59

26 1.62

23 1.66

19 1.69

3 1.70

24 1.71

13 1.80

27 1.82

8 1.86

9 1.90

21 2.12

7 2.13

10 2.28

2 2.56

39 2.73

36 3.37

37 3.73
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(14 in) along the z axis for the forward direction of motion. Figure 3.1 shows the

approximate locations of the thermocouple channels listed in Table 3.1. A sample plot

showing the temperature dependency of the displacement error at three different nominal

positions (approx. 250 mm, 350 mm, and 460 mm) is presented in Figure 3.6.

By looking at the

generic error

versus nominal-

position function,

we divided the

data

corresponding to

the whole travel

range Into sections

with similar

characteristics. In

the case of data

shown in Figure

3.4 for example,

we divided the

data into three

groups, which

overlaps slightly. The first group of data corresponds to the first 250 mm (10 in) of travel.

The second group of data corresponds to the 250 mm (1 0 in) of travel In the middle section

of the travel range. The third group consists of the data corresponding to the last 230 mm

(9 in) of travel. The data corresponding to each section are then curve-fitted with respect to

nominal position and the temperature of the best representative location selected at the

previous step. A sample result from these statistical analyses Is shown in Table 3.3. The

error surface generated by the fitting in this example has a linear relationship with respect to

the temperature and a quadratic relationship with respect to the nominal axis position. Figure

3.7 shows a sample error surface generated by the model for the z displacement error of the

turning center.

Z Displacement Error
(for Z motion forward)

X 1 0 Forward 1 0 Forward + 1 4 Forward

1 4 Forward x 1 8 Forward 1 8 Forward

Figure 3.6

31



TABLE 3.3

Results of the Statistical Analysis of Z Displacement Error Data

(Forward Direction of Motion)

General form of the equation:

€(2 ,
1

^ 2)
= A + BT12 + Cz + Dz^ pm

Regression

Parameters

Position Segments

25 - 250 mm
(1 -10 in)

225 - 475 mm
(9 - 19 in)

450 - 680 mm
(18-27 in)

Std Error of Y Estimate (pm) 1.39 1.26 1.26

R Squared 0.77 0.95 0.98

Number of Observations 280 308 280

Degrees of Freedom 276 304 276

Constant Term (A) (pm) -3.53 -8.863 -149.127

Coefficients

Temp.(B)

(pm/C)

1.212 3.029 4.952

Position (C)

(pm/m)

32.703 73.05 96.356

(Position)^ (D)

(pm/m^)

-14.961 -30.58 -19.92

Max Positive Deviation (pm) 3.025 2.937 3.916

Max Negative Deviation (pm) -4.442 -4.027 -3.797
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The error surfaces generated by the statistical techniques described above can be used to

predict any particular geometric error component of the machine during the cutting operation

regardless of the time and/or temperature history of the machine.

3.2.3. Future Work

Currently, the spindle thermal-drift measurements are being taken on the turning center. The

purpose of these measurements is to Identify spindle axial, radial and tilt drift motions as

functions of spindle bearing temperatures. Once these relationships are constructed, they will

be incorporated into the G-T model.
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3.3. SOFTWARE DEVELOPMENT FOR REAL-TIME ERROR COMPENSATION

3.3.1. Overview

The empirical G-T model being developed is used to estimate the various components of the

machine’s systematic errors at a given cutting-tool position and for a given machine

temperature profile. In order to calculate the resultant error vector of the cutting tool based

on these error components, one has to use a kinematic error model of the machine structure.

This type of model describes the actual relationships of the machine elements to each other,

taking Individual error components into account. Thus, it is possible to describe

mathematically the actual cutting-tool position with respect to the workpiece. A kinematic

model for a two-axis turning center has already been developed in an earlier study [5]. In

this project we are using a similar kinematic model to calculate the resultant error vector.

The simplified version of the kinematic model developed in the previous study expresses the

resultant error vector of the cutting tool in terms of its two components, p^x and p^^, along the

machine’s x and z axes of motion. Since a two-axis turning center does not have any ability

to move the cutting tool in the third orthogonal direction, i.e., the y-ax\s\ the third component

of the resultant vector is of no significance to the current error compensation effort.

Therefore, only two components of the error vector are given by the following equations:

Pex = ey(s)*2(w) - [e,(z)+€y(x)]*ZT - 6,(z) - 6’,(z) - a/£iZ + X, (3.1)

Pe2 =-e,(s)*x(w) + [e,(z)+€/x)]*XT - e,{z)*x - 6,(z)- 6\{x) - a*6x. +Z, (3.2)

where

€y(s) tilt error of spindle about y-axis,

€y(z) yaw error due to carriage z-motion,

€y(x) yaw error due to cross slide x-motion,

6x(x) displacement error of cross slide x-motion,

6\{z) X straightness of carriage z-motlon,

Qp parallelism error between z-motion and axis average line of spindle.
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Ax, Az incremental x and z motion,

6^{z) displacement error of carriage z-motion,

6\{x) z straightness of cross slide x-motion,

Qq orthogonality error between x-motion and axis average line of the spindle,

x(w),z(w) Ideal cutting point coordinates on work piece,

X^, Z, machine offset,

Xy, Zj tool dimensions.

The error components in the above equation are functions of the values of x and z, and of the

machine temperatures as defined by the empirical G-T model. The G-T model for the

previous study consisted of polynomial functions of temperatures corresponding to various

positions along the two axes. In order to represent these polynomial relationships, tables of

coefficients were constructed. This scheme Is slightly different from the approach In the

present modeling effort discussed in Section 3.2.2.

The software described in the following sections was developed using the previous model as

the basis. This software is not necessarily the final version to be used in this project.

Therefore, it is expected that this software will be modified according to the results of the

ongoing G-T model development effort.

3.3.2. The Error Compensation Program

The recently developed error-compensation program implements the model described above

to calculate the geometric and thermally-induced machine errors. It was developed for the

PC/AT- compatible QC running at 12 Mhz with a math coprocessor. It is written in “C" and

has about 450 lines of code and requires about 47K bytes. One design objective was to

minimize the execution time, since correction calculations must run In real time. Another

objective was to determine the complexity of the calculations involved by measuring the

actual run time, and drawing conclusions with respect to other more complex machine tools,

where three error vector components with more terms will be computed.
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3.3.2.1. interpolation

Since interpolation is involved in the computation of every error term, it came under particular

scrutiny, and was optimized for minimal execution time. If a function to be interpolated Is a

polynomial, as In our G-T model, time Is saved by interpolating the coefficients instead of the

function itself. This saving becomes more important for machine tools with complicated

structures.

Generally, the value of a variable y corresponding to an independent variable x between x^

and Xn+1 can be calculated by the following linear interpolation equation:

y = Vn + [(Vn+t - Yn ) / (Vl * >0] * (X * Xj (3.3)

where y^ and y^^^ are the values of the variable y corresponding to independent variables x^

and Xn+1 respectively.

This equation can be rewritten as follows:

y = C„ + V„ * X (3.4)

where

V„ = ( Vn+i - y„ ) / ( x„+, - x„ ) (3.5)

C„ = y„ - V„ * x„ (3.6)

The values of and can be computed once and for all and outside the real-time loop. At

Interpolation time, only one multiplication and one addition have to be performed.

3.3.2.2. Error Calculations

Prior to error-compensation calculations, auxiliary tables required for interpolation are created.

The error calculation process consists of two phases. In the first phase the error terms, which

are functions of temperature only, are computed for a set of Input machine temperatures.
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These are the errors such as spindle tilt, orthogonality, and the yaw drift of the home position.

In the next phase, error terms which are functions of both positions and temperatures are

calculated. These are the errors such as linear displacement errors, angular and straightness

errors along both axes of the machine tool. The calculations in the second phase as well as

others required to evaluate Equations 3.1 and 3.2 are performed during cutting in real time.

In order to carry out the calculations, the program uses the current nominal position x and z

from the RTEC, the tool dimensions, - Xy, Zy,- and the temperatures of six locations

determined In the earlier study [5] to be representing the temperature profile of the machine

structure. The components of the resultant error vector p^^^, p^ are the only outputs of the

program.

3.3.3. Performance Tests and Results

The run time of the two-axes error compensation calculations was measured and found to be

6 ms. Considering the additional error terms to be calculated. It is estimated that the

calculations for a three-axes machine will take approximately 1 0 ms. The current plan for the

error-compensation cycle time is 1 00 ms. Even though there are more computations to be

included Into the current version of the software such as the calculations for the machine

offsets, tool errors, etc.. It is clear that the timing will not be any problem.

3.4. EVALUATION OF THE REAL-TIME ERROR CORRECTOR PERFORMANCE

3.4.1. Overview

Selected testing has been performed on the Real-Time Error Corrector (RTEC) to quantify its

repeatability in the fast-probing mode (which is used in the process-intermittent control loop)

and to demonstrate its ability to modify the tool path of the machine tool (which is used In the

real-time control loop). Fast probing is an on-machine part measurement using a touch-

trigger probe with a feed rate of 2500 mm/min (1 00 in/min) which is 1 0- to 20-times faster

than has been commonly used. The tool path can be modified by the RTEC which is

inserted between a position feed-back device producing "encoder-type" signals and the
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machine-tool controller (MTC). Pulses are added or subtracted from the signals which alters

the count In the MTC and thus alters the tool path from the NC-programmed positions. The

number of pulses added or subtracted compensates for the resultant error vector computed

by the QC from the G-T and kinematic models. The design of the RTEC has been described

previously [6]. The initial application of the RTEC is on the two-axis 18.6 Kw (25 hp) Monarch

Metallst turning center. This machine has linear glass scales with electronic conditioning that

produces encoder-type signals with a position resolution in the MTC of one micrometer.

3.4.2. Repeatability of Fast Probing

To determine the measurement repeatability of fast probing, a point on the face of a part was

probed repeatedly. The stand-off distance was 5 mm (0.2 in) and the over-travel distance

2.5 mm (0.1 in) to ensure a constant velocity of 2500 mm/min (100 In/min) at the trip point

.

A point was probed and the trip-point axes-positions stored in a PC-type computer, interfaced

to the RTEC, every 520 ms. The standard deviation of 35 measurements was calculated to

be 0.45 micrometer. Hence, the two standard-deviation repeatability is 0.9 micrometer which

is essentially the same as the repeatability specification of the probe [1 micrometer at a

velocity of 480 mm/mln (1 8 in/min)] and the resolution of the position feedback after

decoding (1 micrometer). Therefore, we conclude that the fast probing does not reduce

repeatability.

3.4.3. Tool Path Modification

An experiment was designed to demonstrate the ability of the RTEC to predictably and

precisely modify the tool path of the machine tool. A part 152 mm (6 in) in diameter was

faced with a very slight deviation from flat over the radius. The NC part program was written

to produce an 0.20-mm (0.008-in) deviation over a 66-mm (2.6-ln) measuring range portion of

the part radius. A part was cut and measured using fast probing and a mechanical dial

gauge to verify the NC program and machine tool operation. The Identical NC program was

then run again while the RTEC Inserted "correction" counts to modify the tool path to cut the

face flat. The QC computer receives real-time axis-position data from the RTEC. The QC

commanded the RTEC to insert a count for every increment of travel in x (along the radius)
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which would result in a 4-micrometer (the correction count resolution) deviation in z for the

programmed tool path. Over the 66-mm (2.6-In) measuring range, 50 correction counts

were required. A correspondingly larger number of counts were inserted over the total tool-

path length of the cut. The part was again measured using fast probing. A representative

test had the following deviations in micrometers from the ideal modified flat-face at 8

uniformly spaced probing points over the measuring range: 0, 1 , 1 , 2, 5, 4, 4, and 3. This is

as good as can be expected since the correction resolution is 4 micrometers. On-machine

probing may not show the true profile of the part since systematic errors in the machine-tool

geometry will not be observed. However, the accuracy of the tool-path modification by the

RTEC will be correctly measured.

3.4.4. Future Work

As soon as the G-T model and kinematic model have been completed and programmed to

run on the QC, a test of real-time error compensation will be conducted. Initial testing will be

with a simple test part, selected to have as large dimensions as practical and with a flat face

and turned diameters. A step in the diameter will allow incremental and absolute diameter

measurements, and an axial incremental length measurement. This part will allow

assessment of the machine-tool nominal and error- compensated performance for x and z

linear displacement, x and z straightness, orthogonality between x and z, and parallelism

between z motion and the spindle axis. When satisfactory improvements have been

demonstrated with this part over the range of machine operating temperatures, other test

parts with tapers and circular contours will be used.
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4. PROCESS-INTERMITTENT ERROR COMPENSATION

H.T. Bandy

4.1. INTRODUCTION

In the process-intermittent (PI) control loop, part-program modifications compensate for

certain classes of process-related errors by modifying variables that determine the tool-path

(such as coordinates, tool offsets, etc.) in an NC part program for the finishing cuts. The

differences between the part dimensions gauged during pauses between machining passes,

and the corresponding nominal dimensions, are analyzed to determine tool-path adjustments

required for subsequent machining passes. The adjustments will be in the form of tool

offsets in simple cases; othen/vise, the coordinates in the NC part program will be modified.

By programming coordinates which were modified on the basis of observed error patterns,

the tool will traverse a path closer to the nominal path than it would if the part program

remained unchanged.

Software for process-intermittent error compensation has been designed as part of an overall

strategy which includes real-time error compensation. Even though the real-time components

of the system are not complete, explanations of the process-intermittent software will be in

the context of the completed system.

One goal of the real-time control strategy of QIA is compensate for all the systematic machine

tool errors using the geometric-thermal (G-T) model and the Real-Time Error Corrector

(RTEC). However, some machining errors, such as those due to varying tool length,

deflections and wear, will occur in addition to random errors, despite the use of the G-T

model and the RTEC. These are the errors targeted by the process-intermittent error-

compensation strategy.

4.2. METHODOLOGY FOR PROCESS-INTERMITTENT ERROR COMPENSATION

The methodology described in this report has general applicability to turning processes, and

nearly all of the principles are extensible to milling. However, the prototype software has



been developed for the turning center. The software is designed to accommodate several

machine-then-gauge iterations. It Is written in the C programming language and runs on the

Quality Controller (QC), the personal computer used to control QIA processes on the turning

center. A high-level programming language environment, AMPLE, Is used on the QC to

supervise the execution of process-intermittent error-compensation functions (See Chapter 5).

4.2.1. Process-Intermittent Inspection

Process-intermittent dimensional Inspection is performed with a touch-trigger probe. The

numerically-controlled machine tool can be programmed to use such a device to measure

part dimensions and profiles, hole diameters, and distances between hole centers. As a

gauging routine is executed, the RTEC reports the machine-axis positions to the QC for each

probe-trip. The coordinates of the point of contact are then calculated by the QC In terms of

the part coordinate system so that they may be compared to the corresponding nominal

dimensions.

4.2.2. Error Compensation for PI Inspection

Once the G-T model is implemented
,
the QC and the RTEC will continuously correct the tool

path during machining. But during gauging, the QC switches off this correction function.

Therefore, to determine the true probe-trip locations, the gauging data has to be adjusted off

line using the G-T model.

The error, or difference between the nominal dimension and the measurement obtained with

the probe, is due to differences between the characteristics of the tool and the probe and

between the dynamics of the machining and the probing process. Other errors are not

detected. The process-intermittent error-compensation strategy described here assumes the

G-T model to be accurate. The probe and gauging process are also considered to be

accurate for the process-intermittent error data analysis. Inaccuracies in those areas will be

detected in the post-process control loop. Because of these idealistic assumptions, the

measured error Is multiplied by a weighting factor of less than 1 00% (the actual value to be

refined with experience), before being used to adjust the tool path.
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4.3. IMPLEMENTATION OF PROCESS-INTERMITTENT ERROR COMPENSATION

To implement process-intermittent error compensation some critical steps have to be

performed In sequence. These steps are segmentation of NC part programs, development of

on-machine inspection routines, generation of archival part programs, generation of data files

associated with the parts, collection and analysis of on-machIne inspection data, and

modification of part programs.

4.3.1. NC Part-Program Segmentation

In order to insert on-machine Inspection routines before and after various semifinishing and

finishing cuts, original NC part programs must be divided into segments. Segmentation Is

based on subdividing the part geometry into features according to the processes for

machining different sections. Places in the part program where execution may be safely

Interrupted must be identified. They typically occur after blocks of code corresponding to the

machining of certain sets of features. Since the dimensions after roughing cuts are not of

critical interest, NC code pertaining to roughing cuts may comprise large segments, or even a

single segment. NC code for semIfinIshing and finishing cuts, on the other hand, are

contained In small segments to permit gauging after only few cuts.

These independent segments are downloaded to the machine-tool controller sequentially,

and they are executed one at a time. Therefore, header and footer blocks are added to each

segment as appropriate. The end of each segment is marked by an "M30" NC command,

which causes the spindle, coolant and feed to stop. Between the segments the execution will

be suspended to perform certain logistical tasks for error compensation such as acquiring

temperature data, transferring measurement data, etc.

Eventually, a software routine may assist in part-program segmentation. Until it is completed,

segmentation will be accomplished manually. The segmentation boundaries may change

when the requirements of the dimensional gauging sequences, to be inserted as independent

segments, are considered.
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4.3.2. Development of Dimensional Gauging Routines

In this report, the word cut refers

to: a machining pass of the tool

along a single curve (or straight

line), or the surface produced by

that pass, as a geometric

subfeature of the part. In

preparation for developing

gauging instructions to be

sequenced with other segments

of the part program, each part

surface which will need dimensional measurements must be identified as a cut. Figure 4.1

shows a sample part with cuts and gauging points identified on it. In this figure, cuts 1 and 7

are "hypothetical cuts". They do not represent actual surfaces on the part, but are defined

such that their intersections with real cuts are start- and end-points of tool paths.

Future software will assist with the following procedures, presently done manually:

1 . On the basis of the part geometry, determine all the measurements that will need to be

taken on the surfaces considered. Develop a file of the nominal dimensions at each

measurement point.

2. Define the gauging steps for making the necessary measurements. Taking the

machine-tool acceleration distance, and overtravel limits of the touch-probe stylus into

consideration, the coordinates of the probe paths will be based on the nominal

dimensions.

3. After the verification of the probing steps, convert the steps into routines I.e., entire

sequences of formal instructions. Add header and footer blocks to each gauging routine

as necessary to form independent part-program segments. Each routine will be

executed during a single interval between machining passes.

Cut 1

0 1

-• •-
Cut 3

PART
3 4
-• •-

Cut 6

Cut 7

Figure 4.1
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4. Insert each gauging routine segment into its appropriate place in the sequence of part-

program segments.

4.3.3. Generation of Archival Programs and Related Data Files

Archival part programs are special adaptations of original NC part-program segments. They

are generated by replacing tool-path coordinates with variables and by adding tool-offset

commands near the beginning of the program segment. Archival programs function as

temp' 9S. They are used in conjunction with special data files to generate usable NC part

programs. Process-Intermittent modifications are made only to temporary copies of the

archival part program.

In order to generate the above mentioned special data files, the following determinations

must be made prior to the operation. The x-length of the probe and its stylus diameter must

be calibrated. Each part surface to be identified as a cut, as well as the nominal coordinates

of the gauging points to be located along the cut, must be decided. The order in which the

gauging points will be measured must be known. The point whose z-coordinate is to be

used as a reference location on the part must be identified. The tool-path specifications

which are to be variable must be decided. The nominal shape of each surface and its

important planar relationships to others must be specified.

Among other data to be available in files is information concerning each cut containing

gauging points, including (1 ) a cut-identification number to identify each surface to be

gauged; (2) the particular tool-path specifications responsible for the last machining pass that

produced the cut; (3) the direction of the last pass; (4) the surface-normal vector at each

gauging point; and (5) codes associating part-program instructions with particular gauging

results.

4.3.4. Collection and Analysis of Gauging Data

While the machine tool controller Is executing a gauging routine, inspection data are acquired

by the QC from the RTEC under the supervision of AMPLE and are stored In a file. The
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details of the communication between the QC and the RTEC are explained in Pif'SQ Annual

Progress Report of the project [2]. The process-intermittent error compensation software

module reads the data from the file and processes it to generate NC-program modifications.

The procedure for the analysis Is given below.

The error at each measurement

point Is defined as the vector

between the measured

coordinates, and the nominal

coordinates corresponding to

that point. This vector is

decomposed Into its components

along the surface normal and the

surface tangent. Only the

component along the surface

normal is used for the

compensation purposes.

Excessive magnitude of the

component along the surface

tangent indicates a gauging

problem. In this case, a warning

should be generated and data corresponding to this point disregarded.

At the end of execution of each process-intermittent gauging routine, the following steps will

be taken:

1 . Using the machine-tool temperatures that existed at the time of gauging, the machine-

tool coordinates that are registered at each probe-trip will be adjusted using the G-T

model. These adjusted gauging coordinates are then converted from the machine-tool

coordinate system to the part coordinate system. The surface normal vector for each

gauging point is used for this conversion. Figure 4.2 Illustrates the determination of the

part coordinates. Referring to Figure 4.2, Xp^rt and can be calculated using the
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following equations:

Xpan = Xm«.h + rO -Sin0) - (4.1

)

Zpart = Z„^h + Kl -cose) - Zp„p, - AZ,,, (4.2)

The adjusted part coordinates would be Identical to the target coordinates In the case of

zero error. Othen/vise, each error is calculated as the difference between an adjusted

coordinate and the target coordinate corresponding to it.

For the next machining cut, the tool-path error expected on the basis of this analysis will

be compensated by an adjustment in the tool offset or part-program coordinates:

adjustment = -(error) x (weighting factor) (4.3)

There may be a need for a separate adjustment equation for each axis, or even for

different coordinate ranges for each axis. The equations will differ only in the values of

weighting factors, which should be less than 1 00% in every case, to avoid

overcompensation. (The Monarch Metallst Programming Manual suggests a weighting

factor of 20%.) Coordinates in tool-path specifications In the next machining segment

may be adjusted by adding the calculated adjustment to the nominal coordinates in that

segment.

2. Modified tool paths should retain the general shape of the original tool paths.

Therefore, the set of coordinate adjustments calculated in the above step has to be

processed to ensure the smoothness. The adjusted coordinates are fitted to the

nominal shape of the measured part feature using least-squares curve fitting techniques.

Thus, the actual position and the orientation of the measured feature are determined

with respect to those of the ideal feature. NC-program modifications are performed

based on this Information. The general polynomial equation used to determine the

correction curve is given below.

+ C2Z^ + C3ZX + C4X^ + C5Z + C^x + C7 = 0 (4.4)
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With the use of appropriate of coefficients, Equation 4.4 can be used to describe

various geometries such as lines, circles, quadratic and cubic curves. The coefficients

are selected based on the nominal shape of the measured feature. The correction

curve, derived by fitting the adjusted coordinates to the polynomial, becomes the tool

path for the corresponding cut in the next machining segment.

4.3.5. Modification of Part Programs

The adjusted data described in the previous section are used as input to correction functions

to calculate new tool-path specifications. Figure 4.3 shows the functional block diagram of

the overall part-program modification system. The procedure for the modification is

described below.

1 . If the measured feature is found to be only translated with respect to the ideal one,

which is indicated by a nearly constant offset error along an axis, a tool offset change

would be adequate.

2. If the measured feature is found to be translated, rotated, and/or deformed without

changing the planar characteristics (called a plane angle error), compensation can be

done by modifying selected end coordinates related to these features.

3. If the shape of the measured feature is found to be deformed with respect to that of the

ideal one, the compensation requires more elaborate modifications in the NC programs.

These modifications include breaking the features into smaller linear sections and

modifying the end coordinates of these linear sections accordingly.

If tool offsets are to be adjusted, the calculated x and z Increments are substituted into the

update commands in the pertinent part-program segment.

For cases In which the endpoint of one smooth tool path also serves as the start point of the

next tool path, the adjusted coordinates for that point are calculated as the Intersection of the
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Figure 4.3

two correction cun/es for the paths. The new coordinates are substituted for the nominal

coordinates in the pertinent part-program segment.

4.4. PROGRAM INPUT AND OUTPUT

Descriptions of the required input files and the data they must contain would involve much

more detail than would be appropriate in this report. Thus references to input data have only

stated that the data would be available in files. However, descriptions of the only three

output files, namely report.txt, segONOK.dnc, and status.now, are easily simplified. These files

are created at various stages of execution of the software.

The file "report.txt" contains the summary of error history for a completed part. The file

"segONOK.dnc" contains the version of Segment K of the NC program for Part N, which is to

be downloaded to the NC controller. Tool-path specifications in this version have been

refined to reduce errors. The file "status.now" contains the status information to be used by

the other software modules In the system.
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4.5. FUTURE PLANS

The software for process-intermittent error compensation has been described here in the

context of the completed QIA system, even though certain modules are not yet fully

functional. Further work on this software will Include:

• More precise and systematic treatment of part feature segmentation, relating the

features used here to those used elsewhere In the QIA system, particularly the post-

process loop;

. Incorporation of the G-T model of the Monarch Metalist into the process-intermittent

data analysis;

Software to assist in the generation of dimensional inspection routines;

• Analysis of circular arcs;

• Extension of curve-fitting capability to correct for the shape errors of the parts.
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5. IMPLEMENTING THE PROGRAMMING LANGUAGE ENVIRONMENT

FOR THE QUALITY CONTROLLER

J.C. Boudreaux

5.1. INTRODUCTION

The Quality in Automation (QIA) project requires 1) the real-time acquisition and processing

of sensory data, and 2) the development of adaptive machining algorithms for modifying the

tool path as well as the cutting parameters in order to compensate for changes in the

machining environment. The Automated Manufacturing Programming Language Environment

(AMPLE) is being enhanced to provide the functional and computational capabilities needed

in this project.

AMPLE was conceived as an interpretive programming language environment which provided

off-line programming services to permit the construction of control interfaces to industrial

manufacturing systems [7,8]. It consists of a core and associated software modules. The

AMPLE Core is a collection of representable values, called objects (see Appendix B, Section

B.1). In its original version, Version 0.1, AMPLE Core Interpreter (amcore) was based upon a

commercially available dialect of Lisp called Franziisp [9,10]. This version was implemented

on a Silicon Graphics IRIS workstation under the Unix^ operating system.

The QIA project has two major requirements from the software system which can not be

supported by the original version oi AMPLE. These requirements are (1) the capability of

running on a AT-class personal computer called the Quality Controller (QC) under an MS-

DOS^ operating system and (2) the capability of providing control, data acquisition, and

processing services in real time. These requirements created the need for a new AMPLE

version to be Implemented in the QIA project.

The requirement of running under MS-DOS implied that several important Version 0.1

^Unix is a trademark of Bell Laboratories

^MS-DOS is a registered trademark of Microsoft Corporation



modules would be difficult or impossible to transport to the new platform. In addition, Unix

multiprocessing commands used in version 0.1 [7, Appendix B], would no longer be

available.

The second requirement implied that amcore should use a Lisp interpreter with exotic

capabilities such as an internal real-time processor, rtp. The rtp must support two design

goals: (1 ) in order to return the correct value in a timely manner. It must be able to execute at

nearly compiled-language speeds; but (2) In order to be adequately programmable, it must

provide direct access to amcore objects. These goals can be achieved by using special off-

line programming services to build amcore objects which may then be accessed and

updated using the special access functions within rtp. All Lisp dialects and all other

interpretive systems need to reclaim memory, a process called garbage collection. Garbage

collection for MS-DOS AT-class computers can take 500 ms or more. To prevent garbage

collection, the access and update functions must never cause the allocation of any free

memory cells.

After reviewing public domain Lisp interpreters for the AT-class MS-DOS PCs, the XLISP 1 .7

[1 1 ,12] was selected as the starting point for the development of the new AMPLE version,

amcore Version 1.0. The User’s Guide [13] documents the revisions and additions made to

XLISP 1 .7 and also provides a complete inventory of the primitive amcore functions. Note

that the User’s Guide does not describe the functions which provide interface services to the

rtp. A partial list of this family of functions, still under development, is given In Section 5.3

below.

In the remainder of this chapter. Section 5.2 describes the real-time processing component in

the context of the turning center operations. Section 5.3 defines several methods for

increasing the functional capabilities of AMPLE to accommodate various QIA tasks. Section

5.4 summarizes the future work planned for the current fiscal year. To make this report more

or less self-contained, a technical review of amcore is given in Appendix B.
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5.2. REAL-TIME PROCESSING

As noted earlier, the QIA project requires that AMPLE should support not only an off-line

programming mode, but also a real-time processing mode. In this section, a general

overview of an early prototype of the rtp will be given. This prototype was designed to

support the implementation of the real-time tool path modification and the process-intermittent

control algorithms on the Metalist Turning Center during the past year. This overview will

include descriptions of both the primitive amcore functions and the functions programmed

directly in AMPLE for execution by amcore itself.

Generally speaking, AMPLE programs may be resolved into two different kinds of

components: (1 )
functional components, or operations, which correspond to stereotypic

motions of the system being controlled, and (2) flow-of-control components, or scripts, used

to control the order in which operations are performed. During the past year, the prototype

was configured to provide four operations:

1. correction, which reads and displays Real-Time Error Corrector (RTEC) data, calculates

the number of correction pulses required, and then writes this value to the RTEC; this mode

of operation is used to modify the tool path during cutting to compensate for the expected

errors. In the current version of the script, the correction values are generated internally. In

the future, correction values will be generated by an external module described in Chapter 3.

2. no-correction, which reads and displays data from RTEC but which Introduces no

corrections; this mode of operation is used when the machine axes are moved at rapid

traverse rates indicating no cutting therefore no correction necessity.

3. fast-probing, which collects, stores, and displays positional data from probed points

[14]; this mode of operation Is a part of the process-intermittent control function of the QC.

It is used to collect data to determine the part shape and dimensions before and after

semifinishing and finishing cuts.

53



4. process-intermittent-analysis, which modifies NC part programs to correct form

errors in the part that are detected by comparing the empirically derived probed surface with

the associated nominal surface. The software module to carry out this operation is written in

C language and used as an external DOS extension to AMPLE. The functional specifications

and operational details of this module were described in Chapter 4.

5.2.1 . A Prototype AMPLE Script

An AMPLE script was written to carry out the above mentioned functions to demonstrate the

real-time and the process-intermittent control capability of the QC. The script begins with the

selection of a simple part geometry to be produced. For initial demonstration purposes this

geometric feature was designed to be a flat face of a cylindrical part with a specific slope built

in with respect to its centerline. Therefore, the geometry selection is done by keying in the

desired slope. The requested slope is written to a file and an external process is started

using the amcore dos function, as explained in the Section 5.3.2 below. This process, which

is a part of the software module described in Chapter 4, generates an NC part program to

produce a part with the requested slope and downloads it to the machine tool CNC via a

serial RS-232 interface. The script initiates the first machining operation in no-correction

mode to generate the original part geometry. Next, a fast-probing and the process-

intermittent analysis operations are performed by sequential execution calls from the script to

verify the shape generated in this cut.

In order to show the real-time tool-path modification capability, the next cut was designed to

generate a different geometry using the original NC program. For simplicity, the new

geometry is selected to be a flat-face which is perpendicular to the cylinder centerline.

Generation of this part using the original NC program required the modification of the tool

path during cutting by enabling the correction function of the QC. The script calls for the

generation correction tables, discussed in the Section 5.2.2 below, to create the effect of

canceling the requested slope based on initially keyed-in information. Tool path modification

was achieved by the Interaction between an Internal amcore function and the RTEC.

A sequence of fast-probing and the process-intermittent analysis operations was called again
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by the script. To demonstrate the process-intermittent error compensation capability, the

resultant shape from the second cut was compared with the original desired geometry and

the shape error was determined as described in Chapter 4. NC program was modified

accordingly and redownloaded to the machine tool’s CNC. In the final cut, the script calls for

enabling the correction function while the machine Is executing the modified NC program.

Thus, the final cut generates the originally selected part geometry under significantly different

operating conditions. By performing another fast-probing and analysis sequence, the QC

verifies the part as programmed by this AMPLE script.

5.2.2. AMPLE - RTEC Interface

The current version of AMPLE is interfaced to the RTEC by means of a parallel digital 10

board. The communication protocol for this interface, fully defined in [14], may be

summarized as follows:

begln_record

X. axis,status 4 bits; Input

X. axis, position : 20 bits; Input

Z. axis,status 4 bits; Input

Z. axis. position : 20 bits; Input

correction.C.x 1 byte; Input

correction.C.z 1 byte; Input

correction.R.x 1 byte; Output

correction. R.z 1 byte; Output

program.status 1 byte; Input

correction,status: 1 byte; Output

end_record;

This protocol was determined in part by the characteristics of the digital lO board selected for

this project. This board has seven Intel 8255A Programmed Peripheral Interface (PPI) chips,

each of which contains three addressable lO ports and an addressable register. The width of

each port Is one byte. The lO direction is described from the point of view of the QC: if the
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direction is Input, then amcore treats the corresponding ports as read-only, and If the

direction is Output, then amcore treats the corresponding ports as write-only.

The Ftp is serviced by primitive amcore functions. There are several Interface functions

described earlier [14] to facilitate the communications with the RTEC.

initialize_digitalJo_boardO initializes the ports of each of the 8255A PPI chips for

either input or output, it is executed once during start-up.

initialize_diores Q creates an amcore array object and associates it with the symbolic

name DIORES. The components of this array object are initialized to zero.

get_digital_iO 0 ^ function called inp to read all of the input ports of the digital lO

board. In the case of the turning center, only the X.axis, the Z.axis, the correction.C data,

and program.status are used.

put_digitaMo Q the correction.R and correction.status values from the internal

AMPLE representation DIORES, and writes them to the appropriate port.

display_digitaMo Q display the current values of the shared resource

DIORES on the QC screen.

alarm 0 \n\X\a\ value of X.axis.position and Z.axis.position and then returns either

true or nil. Alarm is sensitive to three events: the NC part program has concluded, the

operator has hit any key on the keyboard, or the current value of either the X.axis.position or

Z.axls.position is not equal to their initial values. In the first two cases, alarm returns nil; in

the third case, alarm returns true; otherwise, alarm loops.

5.2.3. New Additions to the Interface

During FY90, several functions were added to the existing rtp. The first group of four
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functions is used to prevent the QC and the RTEC from performing concurrent 10 operations.

write-hold0 sets the high-order bit of correction.status to 0. This operation prevents RTEC

from attempting to read the requested correction fields.

write-releaseQ resets the hIgh-order bit of correction.status to 1
,
which enables RTEC to

read the correction fields.

The read-hold0 function notifies RTEC that a read operation is to be done on the DIORES

board.

read-releaseQ indicates that no read operation is expected on the DIORES board.

correction-cycle(scale) implements an early version of the machine tool correction

algorithm. It has a single floating-point parameter scale which is used to control the amount

of time that will be spent in a delay cycle, which Is used to guarantee that the correction-cycle

will be repeated after a fixed, programmed wait. The following pseudocode illustrates the

overall design of this function:

correction-cycle(scale)

;

begin

until kbhItO do

get x-axis-position, z-axis-positlon;

calculate x-axIs-correction;

calculate z-axis-correction;

put x-axis-correctlon to correction. R.x;

put z-axis-correction to correction. R.z;

display_digitaljo0;

delay-cycle(scale);

end_do;

end;
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In the current script, the correction algorithm was Implemented by storing corrections for

each axis in dynamic arrays. The general method is to create limit-value arrays for each axis

containing the following Integer values:

min = axis minimum position value for correction region

max = axis maximum position value for correction region

grain = resolution interval between min and max for correction region

These three values are selected based upon certain rules. First, min is not greater than max.

Second, there is one and only one Integer, say size, which Is the largest integer such that

max > = (min + (size * grain))

Third, every axis position less than min or greater than max has zero corrections.

Axis correction tables may be created by making arrays of that size, and then entering the

correction count to be implemented at that position. For example, suppose that xpos is value

along the x axis, and that XCOR is the x-axis correction table, then the calculation of the

index of XCOR corresponding to xpos is determined by evaluating the following expression:

( xpos / grain) - ( min / grain)

Since all of the variables are integers, and thus both divisions are integer divisions, this

expression will return an Integer.

The array XCOR contains x-axIs corrections based on x-axis position. But this Is not the only

possible case. In the current version, an array XZCOR was also used. This array contained

z-axis corrections based on an x-axis position, which was required by the demonstration

described in Section 5.2.1. In general, there needs to be a specific rule for combining the

correction counts in several tables, the simplest of which Is to add the partial corrections

together.
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5.3. METHODS FOR E)CrENDING AMPLE FUNCTIONALITY

One of the things that any programming language environment must do is provide uniform

mechanisms for accessing external operations. Three methods for extending the functional

capability of AMPLE are described below.

5.3.1. Extending amcore

The most direct method to extend the functional capability provided to end users Is to add

functions as new amcore primitives. This method was used to develop the rtp interface

discussed In the preceding section. This method has several advantages. First, the

implementation of the functions is likely to run very efficiently. Second, if proper care is

exercised, the results of the execution are immediately visible at the amcore level.

This method has one serious defect: in order to add new primitive functions to amcore, the

programmer has to relink the system from scratch.

5.3.2. Using the DOS function

The second method is to use the primitive amcore function dos. Any command that can be

legally entered to the MS-DOS prompt can be passed as an argument string to the dos

function. Including those commands that invoke executable programs. Thus, If there is an

existing program, say PROC.EXE, which has the needed functionality, then the simplest way

to Invoke it is by keying the following command to amcore;

> (dos “PROC")

which has the effect of opening a MS-DOS shell, and then executing the program

PROC.EXE. When the shell process terminates, the DOS shell is closed, the memory

allocated to it Is reclaimed, and control is returned to the parent amcore process. This

method was used in the current version of the script to access the process-intermittent

analysis and compensation software described in Chapter 4.
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This method solves the most important defect of the first method, but has several problems

of its own. Since amcore remains in memory, the upper bound on the size of all processes

which can be can be started is severely restricted by the MS-DOS 640 Kbyte limit on

accessible memory.

5.3.3. Remote Access

This method partially solves the MS-DOS size limit by allowing the existing amcore

environment to be saved between sessions. A snapshot of the current state of amcore,

which Is the state of the environment, is taken and then written to a file. Given the fact that

the entire state of amcore is the state of its symbolic values, what Is actually being saved is

the list of all user-defined symbols, called the savelist*, and the values assigned to each of

them. Only user-defined symbols need to be saved since the meaning of ail primitive

amcore symbols is fixed In advance by the Interpreter itself.

Once *savelist* has been created, the defined amcore function save, which must be given a

filename as an argument, writes to that file all of the symbols in *savelist*. If filename is

LOADed then the effect is the same as if all of the functions had been re-keyed. In other

words, the state of the system is the same as it was just prior to the execution of save. This

method is especially useful when the external software to be accessed Is too large to fit in

memory when amcore is resident. For example, by using remote access, it is possible to

define a practical Interface with the CADKEY system which will eventually be used in the QC.

5.4. FUTURE WORK

There are two tasks to be accomplished in the next fiscal year. The first task will be the

Incorporation of ultrasonic sensing capabilities within AMPLE. Initially, this effort will require

the integration of analog-to-digital conversion of a voltage signal in order to be able to

measure the surface roughness of machined parts from the echo amplitude of ultrasonic

pulses. The second task will be the incorporation of a commercially available database

system on the QC for the storage and retrieval of both archival and transient data.
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6. AUTOMATED INSPECTION USING DMIS AND IGES TO INTEGRATE

CAD/CAM SOFTWARE PRODUCTS WITH CMMS
D.C. Stieren and S.D. Phillips

6.1. INTRODUCTION

The post-process inspection of a manufactured part has come to serve as the "metrological

anchor" of the manufacturing process. The inspection procedure performed In this loop

ultimately determines whether a finished part meets dimensional specifications --if the part is

accepted or if it is rejected. Also, post-process Inspection monitors and provides the data to

measure the performance of, and improve, other parts of the QIA system, such as process-

intermittent (PI) part probing and the real-time error compensation algorithm provided by the

machine tool’s geometric-thermal (G-T) error model.

Advances In production methods such as CNC machine tools and Integrated CAD/CAM

products have increased the speed of the production run. These increases in production

speed have dictated the need for advances in part inspection techniques. This problem has

been addressed by the use of coordinate measuring machines (CMMs). Not only have

CMMs greatly reduced inspection times, but they have also increased the flexibility, reliability,

and accuracy of measurements. CMMs that have different levels of sophistication are

available and in use In the manufacturing arena: there are manual machines, machines that

operate under remote joy stick control, and machines that operate under direct computer

control (DCC).

6.2. TRADITIONAL PART INSPECTION USING THE DCC CMM

All of the CMM inspection work performed within this project has been carried out on a DCC

machine. DCC CMMs provide the highest levels of inspection accuracy, throughput, and

automation. Until recently DCC CMMs have received their inspection instructions through a

labor-intensive process. Instructions are either produced in a teach mode, or written in the

specific language utilized by the particular CMM’s operating system. The first method

requires that at least one part of a batch be produced before the inspection routine for the



part can be created. The second method requires the operator to be familiar with the CMM’s

specific operating language. Both these methods require considerable time to produce a

part program, and they both require a certain amount of time for operator-CMM interfacing,

which is essentially nonproductive down-time for the CMM. This down-time can be minimized

by using a standard interface language.

6.3. THE DIMENSIONAL MEASURING INTERFACE SPECIFICATION

In February, 1990, the American National Standards Institute (ANSI) adopted the Dimensional

Measuring Interface Specification (DMIS) as a national standard [15]. DMIS is designed to

prescribe a standard format in terms of a common language to allow Interfacing between

CAD/CAM software products and dimensional measuring equipment hardware products, such

as CMMs.

DMIS serves as a bi-directional communication standard for computer systems and

Inspection equipment. In other words, inspection programs and the resulting inspection data

can be expressed in a generic vocabulary that is available to both CAD/CAM software and

CMMs and serves as the common link between the two. This allows the generation of part

programs within CAM software that utilize data bases produced within a CAD package.

These part programs can be generated off-line through graphical computer Interfacing and

the use of pre- and post-processors. This method, detailed In this text, greatly reduces the

amount of time required to produce a part program.

While it is designed for use in a computer-controlled environment, DMIS is both man-readable

and man-writable. If required, DMIS part programs can be edited manually. In addition,

DMIS facilitates the development of a data base to store inspection results from various types

of dimensional measuring equipment by providing a common format that allows easy access

to information. In other words, with the aid of translators, DMIS Information can flow to and

from different inspection machines, regardless of their specific operating languages.
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6.4. SYSTEM OVERVIEW

6.4.1. NIST Inspection System

An inspection system has been implemented at NIST that integrates CAD/CAM software

products with a CMM using the DMIS standard. This system also utilizes the Initial Graphics

Exchange Specification (IGES) [16] to allow for interfacing between the different CAD and

CAM software products that are present. IGES provides for the exchange of graphical data

among CAD systems from different manufacturers. The NIST system has been implemented

with various goals In mind: (1) demonstrating the operation of DMIS using products

commercially available to the industrial public; (2) incorporating off-line automated inspection

path generation directly from a CAD data base to the CMM using DMIS; (3) demonstrating

the utility and flexibility of ANSI standards by integrating into the system products from many

different manufacturers; and (4) addressing the needs of the small-to-moderate size machine

shops In terms of cost and system simplicity by Integrating the entire post-process Inspection

system Into one enhanced PC-class computer with an 80386 processor.

There are other systems existing in manufacturing environments today that perform basically

the same functions as the NIST system. These other systems, however, may eliminate the

integration of DMIS and/or IGES. Therefore, they are machine-specific to the CMM used, the

computer system used as the controller, or both. Also, these systems are generally more

complex and expensive. By using ANSI standards and PC-class computer control, NIST is

attempting to address the needs of a wide audience with this system.

The schematic flow diagram for the NIST automated inspection system Is shown In Figure

6.1 . This diagram Illustrates graphically what the system does and how the system works.

The realization of the strategy for this system is the direct result of a cooperative research

effort among NIST and six U.S. Industrial manufacturers. In conjunction with NIST’s research

associate (RA) program [17]. It Is stressed that each module in Figure 6.1 represents a class

of products that can be used In this type of system configuration; specific products are

mentioned in the discussion of NIST’s system with the intention of conveying general

information regarding the integration and implementation of this type of system.
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6.4.2. Inspection Process

The inspection

process

commences with

the generation of a

CAD

representation of

the manufactured

part. This CAD

representation is in

the form of a three-

dimensional wire-

frame model and

is produced within

our system using a Cadkey CAD package. The CAD data base is then translated into the

IGES format using a Cadkey-to-IGES translator, to allow the CAD geometry to be utilized

elsewhere in the system. The IGES standard provides a common graphics format that allows

part geometry information to be used by various software products. This IGES geometry file

is imported into a CAM software package called PCDMIS, where the CMM Inspection path is

created in DMIS format.

The path is created through a graphical interface on the computer screen, off-line and

independent from the CMM. The user produces the inspection path by directing a mouse

around the wire-frame image (IGES graphical representation) of the part geometry to

designate the various points and features to be included in the part Inspection. Once all the

points, features, and other inspection information such as tolerance requirements and

probe(s) data have been identified, the inspection routine, which is generated by the system,

can be simulated on the computer. The simulation consists of an animation of the probe

maneuvering about the part exactly as the actual hardware would when conducting the CMM

inspection. This is basically an editing feature of the system, and when all input and editing

is completed, the software produces a DMIS part program.

Figure 6.1
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6.4.5. The NIST CMM

The CMM used in this system, a Sheffield Apollo Series Cordax^ machine, has been

retrofitted with a laser interferometer system for scale positioning and utilizes a Renishaw

probing system. Since the operating system of the CMM is based on Sheffield’s own

software (not DMIS) a translation of the DMIS program must be performed using a pre-

processor. The Sheffield translator turns the DMIS part program Into a part program that the

CMM can execute. This CMM-executable program (FLB3_D) is structured In the Hewlett-

Packard (HP) Basic language and calls commands from Sheffield’s function library (FLB3), as

well as from the DMIS standard. The FLB3_D program is then loaded into the CMM

operating system, and the part inspection is conducted on the CMM. All of the software for

the system to this point operates within DOS. The operating system for the CMM which will

execute the part program, however, is designed to run under the HP Basic language. This

language operates using a separate processor located on a separate card installed in an

expansion slot of the PC. This card is invoked In order to load and execute the Sheffield part

program, and this system runs independently of DOS. Also, since this system operates

independently of DOS, HP Basic can be operated in the background while running other

DOS applications. Hence, the system can have multitasking inspection capability.

6.4.6. Inspection Results

The inspection results from the CMM are structured in two formats. The first Is the inspection

report that is produced by the Sheffield system. This report contains the specific Information

that is requested during the Inspection path generation: for example, the specific report

format, system Information such as program name and execution date and time, feature

numbers and types, actual and nominal point locations or feature sizes, and tolerance data.

The second is the DMIS output file. This file is a DOS-formatted file created by a Sheffield

application program within the Basic system. It Is produced from the ASCII data file of the

inspection results, and contains the Inspection results in the DMIS output structure that is

tailored by the DMIS part program. The specific DMIS structure here varies with each specific

^For disclaimer on the use of commercial equipment, see page iii.
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inspection program, but it can contain the x, y, and z coordinate values of each individual

data point collected for contoured surface parts; or it can contain the geometric feature

information associated with prismatic parts.

6.4.7. Analysis of Results

For most prismatic parts either of the two inspection result formats described above provide

adequate inspection information. However, for sculptured or contoured surfaces, DM IS

results provide only x, y, and z probe coordinate data. Analysis of this type of data is

performed within a commercially available software package called Qualstar. This software

runs from an Interactive Systems UNIX 386/ix operating system that occupies a partition of

the hard disk of the PC. There are software utility programs in UNIX that emulate DOS and

allow DOS files to be read from floppy drives. These programs, however, do not allow one

partition of the hard disk to be read from within another, but they do facilitate reading the

DMIS output files in Qualstar.

Qualstar provides for the analysis of inspection results by comparing nominal part geometry

with the actual. Inspected part geometry. If the nominal part geometry is defined by the IGES

parametric spline surface entities, the IGES file created earlier in the process may be used by

this software. Othenvise, the nominal geometry must be re-created within the Qualstar

software. The analysis here is conducted on a point-by-poInt and feature-by-feature basis for

a part, and mainly consists of graphically overlaying inspection data onto nominal part data.

Numerous fitting routines and geometric algorithms are available in this software that allow

data manipulation and analysis capabilities. In addition to indicating the out-of-toierance

parts, the analysis provides information about the possible reason for the part rejection by

examining every data point In an effort to depict trends in the manufacturing process.

6.5. DMIS SYSTEM PERFORMANCE

6.5.1. CAD-to-CMM

This portion of the text will concentrate on how the CAD-directed Inspection system has
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performed with regard to the various tasks that have been attempted. Most of the inspection

work performed during FY90 focused on the NAS979 test part for milling machines [18].

Construction of a 3-D wireframe representation of the part geometry on the CAD system and

the translation into IGES format are stralghtfon/vard. All the IGES files we produced from the

part geometries have been successfully accepted by the inspection path generation module.

The inspection program for the NAS test part was constructed in approximately 40 minutes

using this system, and the resulting output contained approximately 700 lines of DM IS

statements. This is roughly an order of magnitude faster than can be achieved by manual

programming without the assistance of CAD direction. Specifying inspection features is

relatively easy, and they often have user-definable default values, e.g., six equally spaced

points to measure a circle. Similarly, the computer simulation of the Inspection procedure,

which can be obsen/ed simultaneously in as many as four different views. Is useful to debug

the Inspection routine.

6.5.2. Progress to Date

Referring to Figure 6.1, during the past year the system has Implemented each of the major

blocks In the diagram; however, it is not yet complete. For the inspections we have

attempted, there is a certain amount of manual editing that must take place within the system.

The main source of the manual editing necessary for a part inspection has been related to

the translators within the system. These translators allow the different software products to

be integrated with one another. Specifically, a translator Is required to produce an IGES file

from an associated CAD data base for use in both inspection path production and inspection

result analysis. Another processor is needed to produce the CMM-specific language part

program from the DMIS part program, and to produce the DMIS output file from the ASCII

data file of the inspection results.

6.5.3. Inspection of Parts

As described above, there are two different strategies using DMIS for part inspections. For

parts containing basic geometric features (circles, lines, etc.) the usual procedure would be to
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use commands to evaluate these features. In this case the points measured on the part have

been processed to yield meaningful entitles such as a circle diameter. Alternatively, an

inspection program could be written containing commands which produce raw point data, in

the form of x,y, and z coordinates, as the final result. Contoured parts generally do not

contain easily identifiable geometric features; therefore, these parts must be inspected in this

manner, with the aim of collecting information from a number of individual points that

constitute a certain surface or curve on the part.

Parts can be inspected using part programs that contain measurement functions from the

vocabulary of DMIS commands for basic geometric features, or the part programs can utilize

the DMIS commands for general cun/es and surfaces, "FEAT/GCURVE" and TEAT/GSURF,"

respectively. The specific set of DMIS commands used in the part program dictates the

format of the inspection results, as well as the result analysis. For example, the DMIS

command to define a 2-D circle, “FEAT/CIRCLE," generates a measurement output that can

include the coordinates of the circle center point and the diameter of the circle, among other

entities. The DMIS command that defines a feature as a general curve, "FEAT/GCURVE," on

the other hand, generates a measurement output that contains the 3-D coordinates of each

point measured on the feature. Contoured surface parts must be Inspected on a polnt-by-

polnt basis using the DMIS command for Individual point identification, "FEAT/POINT," or

using the DMIS "FEAT/GCURVE" or "FEAT/GSURF" commands. All three of the DMIS

commands just mentioned produce a DMIS output file of inspection results that contains the

X, y, and z coordinate values of each point measured on the part.

6.5.4. DMIS Part Programs

The inspection system at NIST can produce DMIS part programs for prismatic parts that

implement the commands for features from the DMIS vocabulary (see Table 6.1). For

contoured surface parts our system has the capability to generate DMIS programs that

produce individual data point output only using the "FEAT/POINT" function. Within our

system we have the capability to conduct detailed analyses of such individual data point

results, both graphically and numerically through algorithmic fitting routines, using the

Qualstar metrology-based analysis software. At this time, splines representing contoured
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surfaces can be directly imported into Qualstar from their IGES entities, while simple

geometric entities can be constructed in the software using an on-board editor.

TABLE 6.1

DMIS Vocabulary of Feature Definitions

FEAT/ARC Format 1

FEAT/ARC Format 2

FEAT/CIRCLE
FEAT/CONE
FEAT/CYLNDR
FEAT/ELLIPS

FEAT/GCURVE
FEAT/GSURF *

FEAT/LINE

FEAT/PARPLN
FEAT/PATERN
FEAT/PLANE
FEAT/POINT
FEAT/RAWDAT
FEAT/RCTNGL
FEAT/SPHERE

* NOTE: These feature definitions are intended for use with contoured surfaces,

rather than prismatic features.

6.5.5. Further DMiS Command Deveiopment

We are working closely with our industrial partners to support the ability to generate individual

point inspection results using the commands for general curves and general surfaces, in

addition to the DMIS command for points. This capability is extremely useful for part

Inspection because It allows the operator to forego the procedure of digitizing every point to
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be inspected on a feature and/or part; in other words, the DMIS commands “FEAT/GCURVE"

and "FEAT/GSURF" facilitate Individual data point results while optimizing the time required to

produce an inspection path.

6.5.6. Limitations

The limitations of the inspection system can be divided into two categories: fundamental and

application-dependent. A fundamental limitation of this system is set by the scope of the

various national standards. IGES version 4.0 does not associate tolerancing information with

geometric features. Thus, It Is necessary to Input the tolerances during the Inspection path

generation or analysis steps. The Standard for the Exchange of Product Model Data (STEP,

and formerly known as PDES), which will eventually supersede IGES, will directly associate

the tolerances with their geometric features [19]. This would allow the tolerancing information

to come directly from the CAD file and Increase the efficiency of the system.

The scope of the DMIS standard supported by the various application programs represents a

more immediate limitation. Since the DMIS standard is intended to be applicable to a wide

range of automated dimensional measuring equipment, few applications support all the

statements within the standard. Consequently, a particular application program may not

contain a desired command or definition. In our system, an example of this is the Inability to

calibrate or change the CMM probe directly from DMIS commands. While the system can

make allowances for different positions of a probe by redefining the probe index within the

part program, DMIS has no means of changing the physical type of probe sensor the CMM

utilizes. In other words, DMIS has the capability to manipulate one probe head into many

different probing angles within a part program, but no way to actually change, for example,

that probe from a mechanical touch-trigger probe to a touch-trigger probe of different tip

radius, or to a piezoelectric probe, should one of these be required. The NIST system does

have hardware in the presence of a Renishaw automatic probe changer rack that allows the

CMM to physically change the type of probe it uses. In practice, we execute a short

calibration program written in the CMM’s native language before starting the CMM inspection

run. Since the probe calibration program Is relatively short, and does not usually change
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between part inspections, in contrast to part programs which presumably change often, this

is only a minor inconvenience. Similarly a probe can be exchanged in the auto change rack

but this command is in the native CMM language.

6.5.7. Present Status of Applying DM IS

The usable DMIS statements which can be executed in a fully automated manner are those

common to the various program vocabularies. Even if all the Implemented DMIS applications

contain common DMIS terms, there is still a possibility that the interpretation of these terms

may be different. This is largely due to the fact that the DMIS standard Is less than one year

old, and like all new standards, is undergoing a stabilization period. We do not mean to

overemphasize these, as we were able to Initiate CAD-to-CMM inspections using DMIS within

a week of Installing the software. Furthermore, it can be expected that market forces will

rapidly expand the scope and number of DMIS applications available.

6.5.8. Future Work

In FY91, and possibly beyond, NIST will continue to work with our industrial partners through

the Research Associate (RA) program in an effort to continue to support and promote, as well

as enhance, inspection techniques that utilize the DMIS standard. We will work towards

developing new aspects of the DMIS standard to produce maximum flexibility. We will also

be actively working with the DMIS standards committees and users’ groups, providing a third

party perspective to the direction of the standard, since NIST is neither a product vendor, nor

a true product user.

6.6. SUMMARY

An inspection system for manufactured parts has been implemented at NIST that uses two

national Interface standards to integrate CAD/CAM software products with a CMM. This

automated system integrates CAD data bases and software result analyses into part

inspections to produce a closed-loop process. The system, which is controlled entirely from

71



one enhanced PC 386-class computer, demonstrates the use of the DMIS standard to

facilitate part inspections. Also demonstrated Is the integration of hardware and software

products from several different manufacturers into one operational system. The different

manufacturers have become involved with this system and research through NIST’s RA

program.

The system, while fully operational, is not complete. This is due to certain incompatibilities

among the different commercial products. The system does, however, possess the capability

to inspect and analyze the associated results of many manufactured parts, whether they are

prismatic, cylindrical or contoured surfaces.

The DMIS standard effectively enables communication between CAD systems and

dimensional measuring equipment. The inspection system at NIST utilizing this standard can

produce part inspections integrating DMIS instructions an order of magnitude faster than is

possible by traditional, manual programming. The part programs that contain these DMIS

instructions are produced off-line, without the need for an actual part to be produced. This

off-line generation of part programs can occur without taking the CMM out of productive

sen/lce, which Introduces a flexible, multitasking capability to the system. The graphical

interface between the CAD system and the CMM greatly reduces the need for detailed

knowledge of the DMIS vocabulary since these statements are generated automatically in the

correct syntactical form. Although some temporary limitations exist regarding the scope of

the DMIS standard that each particular application supports, these should rapidly disappear

as DMIS becomes accepted throughout the inspection industry. Future developments in the

representation of solid part geometry in IGES and STEP will expand the capability of DMIS-

based products.
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7. CONCLUSION

M.A. Donmez

7.1. PROGRAM DIRECTION

Development of a closed-loop quality control system for discrete part manufacturing is one of

the most challenging research efforts in the manufacturing field. With our Quality In

Automation (QIA) program, we have proposed a three-layered control architecture to address

this need and have nearly completed the steps required to demonstrate the inner two control

layers.

In the preceding sections we have described the work done during the past year in our QIA

program. This program is a combined effort of two divisions in the Manufacturing

Engineering Laboratory at NIST. It is funded primarily by the U.S. Navy and internal NIST

resources. Even though the main goal of the program, to develop and Implement a quality

control architecture to obtain an order-of-magnitude Increase in part accuracy from

commercially available manufacturing equipment. Is still the same as in the beginning, the

operational plans have been modified over the past two years. These modifications are

mostly the results of changing resources for the program. We started out with a plan to

implement our QIA system to three machining stations-a turning center, a vertical machining

center, and a horizontal machining center-in addition to an inspection station. But, due to

manpower and equipment shortages we dropped the horizontal machining center from our

plans at the end of the first year. The resource shortages are forcing us to concentrate on

only one machining station in FY91
,
the turning center only. Implementing the three control

loops for the turning operations is now our first goal. Once this goal is achieved, the

methods we develop will be extended to include machining center operations as the second

stage of the program. We will describe the current work plan to achieve our first goal in the

following sections.



7.2. WORK PLAN FOR FY91

The goals of the activities planned for FY91 are to complete the details of the two innermost

control loops (i.e., real-time and process-intermittent control loops) of the QIA architecture for

the turning center, as well as to concentrate new efforts on the post-process control loop.

In the real-time (RT) control loop, we will be monitoring the cutting process using position,

temperature and ultrasonic sensors, and modifying the tool path, and subsequently the feed

rate and spindle speed during cutting to compensate for predicted geometric and thermal

errors as well as to minimize the chatter and vibration or optimize surface finish. To achieve

this, we will complete the geometric-thermal (G-T) and kinematic model of the turning center,

develop a speed/feed regulation system, integrate a tool-setting station Into the tool path

correction algorithm, and integrate an ultrasonic surface roughness sensor system into the

Quality Controller (QC).

In the process-intermittent (PI) control loop, we will develop feature segmentation criteria and

develop algorithms to Implement feature segmentation. Our goal is to automate the

generation of on-machine inspection routines, and Incorporate the GT model Into the off-line

PI data analysis. We will also develop more extensive and structured decision rules for Pl-

based NC program modifications.

The efforts for implementing the post-process control loop will be concentrated In three main

areas: (1 ) performing closed-loop post-process part measurements on the Coordinate

Measuring Machine (CMM), (2) developing a Quality Monitor (QM) to analyze the post-

process measurement results and close the post-process control loop, (3) developing a

relational Quality Database (QD) to store all the part and manufacturing related Information to

be used by the QM and the individual QCs.

The work on closed-loop post-process measurements on the CMM has already started during

the past year. We will continue this work to Implement fully automated post-process part

measurements. To achieve this goal we will develop procedures to generate inspection

paths based on features created by the segmentation algorithm and analyze the relationships
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of datums described in ANSI Y14.5 standard [20] to our part feature analysis. We will

perform CMM data analysis to identify feature errors on our test parts, which will be

redesigned for initial simplified analysis. We will also continue working with software

manufacturers to improve the fluency of translation between IGES and DM IS.

Corrective action commands
to Quality Controllers

Figure 7.1

The development of the QM requires four major tasks to be completed. These four tasks are;

(1) development of decision rules for machine tool diagnostics, (2) development of a

Statistical Process Control (SPC) type of algorithms to determine residual systematic errors in

the process, (3) development of algorithms to determine the corrective actions to be taken to

eliminate these residual errors, and (4) development of a graphics-oriented user Interface to

extract process information upon request. The interactions between the functional elements

of the QM and the QD are shown In Figure 7.1 . These tasks will be initiated during FY91
,
but

concluding all of them will not be possible until FY92.
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The development of the QD requires the selection of a commercially-available relational

database system in the first step. The capabilities of such systems will be investigated based

on our needs within the scope of the QIA program. Three candidates are under

consideration. Once the system is selected, the database structure will be implemented.

Implementation of the database will include at least the following attributes:

I. part-related attributes

a. feature ID

b. feature type

c. part ID

d. material

e. measured feature errors

II. time/temperature/history-related attributes

a. time of machining

b. elapsed time to complete

c. machine temperature profile at the time of cutting

d. ambient temperature at the time of cutting

III. equipment-related attributes

a. machine used to make the feature

b. axes involved in producing the geometry

c. nominal positions along these axes

d. cutting tools used

IV. process-related attributes

a. cutting parameters used

b. PI inspection data

c. PI modification executed

New attributes may be added to this list as needed by the QM analysis algorithms. The

software and the hardware Integration of the QD with the QC of the turning center will be

completed in FY 91 . Further development of the QD will be coordinated with the

development of the QM in order to ensure satisfying the data requirements of the post-

process control loop.
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APPENDIX A. Z AXIS ERROR PLOTS OF THE VERTICAL MACHINE
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Z-AXIS PITCH [Y-Z PLANE], ARCSECONDS
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APPENDIX B. TECHNICAL REVIEW OF THE PROGRAMMING

LANGUAGE ENVIRONMENT

J.C. Boudreaux

B.1. INTRODUCTION

This appendix is divided into three sections. The first section gives enough of an overview of

amcore to allow readers, who are not familiar with Lisp dialects, to interpret the code

presented in Chapter 5 above. The account given below is a brief selection of material

which is presented more thoroughly in [12]. The second section describes the methods to

be followed to add new primitive functions to amcore. By studying this section, the reader

will acquire a good feel for the overall organization of the Microsoft C implementation itself.

The third section is an exercise in amcore coding which defines the functions needed to take

snapshots of the symbolic environment.

B.2. AN OVERVIEW OF AMCORE

Amcore is a small subset of Common Lisp [14], adapted to the specific requirements of

automated manufacturing [10], [11]. This Lisp dialect and its underlying rationale has been

described in [12]. All dialects of Lisp, including amcore, distinguish between lists and atomic

objects. List are sequences of items, the first of which is called the head of the list, and the

rest are called the tail. These components are accessed by two primitive functions: the car

function, which returns the head, and the cdr function which returns the tail. Lists are

constructed by applying the primitive function cons to two arguments, the first of which

becomes the head of the returned list and the second becomes the tall. There is one

headless list, called nil. Every other list has one and only one head.

B.2.1. The Model of Computation

Amcore is an Interpreter whose behavior is defined by a read-eval-print loop. Each of these

functions is a primitive function of amcore. The read function returns the next expression

from the specified input stream. This expression is assembled character at a time under the



control of a data structure called the readtable. Once the read operation is properly

terminated, the assembled expression is passed to the eval function.

o If the expression is a list, then eval applies the head of the expression, which must be

a function, to the items in the tail of the expression, which are the arguments.

Functions are distinguished into two classes, depending upon the manner in which the

argument expressions are handled. For the largest class of functions, called SUBRs, each of

the arguments is fully evaluated before the function is applied. For other functions, called

special forms or FSUBRs, the arguments are passed without prior evaluation.

o If the expression is an atom, then It evaluates to itself.

After the eval function finishes its work, the returned value is printed to the designated output

stream. The following transcript Illustrates the behavior of this loop:

>(2 3)

6

Special characters, called read macros, may be inserted in the input stream to modify the

operation of the read function. The quote function is used to prevent the evaluation of Its

argument, which means that the value of a quoted expression is the expression itself;

> (quote (+ 2 3)) ;using the QUOTE function

(+2 3)

>’(+23) ;using the equivalent read macro

(+2 3)

This session also illustrates the use of the semicolon macro to Indicate the start of a

comment. The scope of this macro extends to the next end-of-llne character.
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B.2.2. Symbols

Symbols are atomic objects, but unlike such atoms as integers or floating point numbers,

they may be used in different ways. At any time during an interactive session, a finite and

clearly defined aggregation of symbols have each been assigned a concrete meaning. From

an operational point of view, the meaning of a symbol is whatever non-error value is returned

when that symbol is evaled, or, equivalently, the non-error value printed when the symbol is

entered at the amcore prompt. If the symbol has no current meaning, then the result of

evaling it is an error message, saying that the symbol is unbound. At any time, the collection

of all meaningful symbols is called the (current) environment. Throughout the progress of an

interactive session, the environment will usually change many times. In Version 1 .0, the

environment Is represented by the amcore object *obarray*, which is in effect a symbolic

hash table.

Symbols may be used to designate variables. Variables point to a location in store and may

be assigned a value. For example, evaling the expression

> (setq X #C(1.0 1.0))

causes the symbol X to be entered into *obarray* and assigns X the value #C(1 .0 1 .0)).

Symbols may also be used to designate functions. When the interpreter is presented a list

whose head Is a function symbol, then it applies that function to the tail of the list which

consists of the arguments. The evaluation of such an expression will succeed only if the

symbol is either a primitive function or has been assigned a value by a legal function

definition. Function definitions in amcore are the work of the primitive special function defun:

> (defun cube (x) (* x))

CUBE

The first entry of this session defines cube which requires one and only one argument, here

represented by the symbol x. The body of the function says that the value returned by
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applying cube to x is the number obtained by multiplying x by itself three times. The symbol x

is a parameter, that is, whenever the expression

> (cube 2)

is evaled, the current environment is temporarily modified by entering the symbol x, as a

so-called lambda-bound variable, and assigning it the value 2. Then the body of the function

is evaled in order and the final valued so obtained is returned as the value of the function.

After this value is returned, the added parameters are dropped from the environment.

Symbols may be used within complex data structures called property lists. A property list is a

list of attribute-value pairs. An attribute-value pair may be thought of as a list whose first

member is a symbol, called the attribute, and whose second member is any bonafide object.

For example, the following expressions:

(putprop ’a-sphere ’diameter 3.75)

(putprop ’a-sphere ’unit ’inch)

say that the diameter of a-sphere Is 3.75 inches. The getprop function permits access to the

value of an attribute;

> (getprop ’a-sphere ’unit)

INCH

> (getprop ’a-sphere ’diameter)

3.75

If the attribute specified by getprop Is not among the attributes of the symbol, then nil is

returned. The property-list construction provides a special environment within which symbols

can be chained together to form very complicated patterns: attribute symbols can have

property lists, whose attribute symbols can have property lists, and so on.
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B.2.3. Special Forms

The cond special form is the primary branching construct of amcore. The arguments of the

cond expression are called cond clauses, each of which Is a list whose head is called the

test expression, followed by a list of zero or more tail expressions. The eval function

processes each clause in order, selecting for further evaluation the first clause whose test

expression evaluates to a non-nil value.

(defun adjoin (item bag)

(cond ((member item bag) bag)

(T (cons item bag))

)

)

That is, If item is a member of bag, then adjoin will return the value bag unchanged.

Otherwise, adjoin returns a list whose head is item and whose tail is bag. Note that the test

expression of the second clause is T, which is a constant symbol designating an arbitrary,

but fixed, non-nil value.

Function definitions can also be constructed recursively, that Is, legal definitions may contain

occurrences of the function being defined. For example, the function member uses recursion

to determine If item is a member of bag:

(defun member (item bag)

(cond ((null bag) nil)

((equal item (car bag)) bag)

(t (member item (cdr bag))) ;the RECURSION step

))

This function is a simplified version of the primitive function member, which was used above.
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There are several mechanisms in amcore for performing iterative calculations. One is the

prog special form, which allows for the declaration of local variables and for the use of

symbols as labels. Iteration may also be done using the do special form which consists of

three components: an arbitrary number of loop control variables, a loop test clause, and then

a sequence of zero or more expressions which is analogous to a prog body. Each loop

control variable is declared by specifying an initial value and a next-value, or update, function.

If the head of the test clause is non-nil ,then the loop test is said to be activated. In this

case, the remaining expressions in the test clause are evaluated and the value of the last of

these expressions is returned. If the loop test is not activated, then a value returned by the do

loop only If it is the value of a return function in the loop body.

(defun reverse (1st)

(do ((x 1st (cdr x))

(y nil (cons (car x) y)))

((null X) y))

)

Notice that this do loop manages to return the correct value, and in fact will always do so if

applied to a list, even though the prog body is nil.

B.3. ADDING NEW PRIMITIVE FUNCTIONS TO AMCORE

The quality and reliability of an Interpretive system depends entirely upon the quality of the

underlying interpretation. Building an interpreter is a difficult task in the best of cases, but

the structural properties of amcore demanded even higher standards of rigor: a strictly

regimented set of fundamental design principles, each of which Is clearly and distinctly

articulated. The single most important principle is that every amcore object belongs to one

and the same type, namely, the type NODE. The fact that every amcore object Is a NODE

means the addition of new primitive functions needs to be done with some care. The

following function, written In Microsoft C, Illustrates the kind of care that has to be taken.
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/* block 1: the preamble */

NODE *xtimed_wait(args)

NODE *args;

{

union REGS;

unsigned long us_delay;

us_delay = (unsigned long)xlmatch(INT,&args)->n_int;

xllastarg(args);

/* block 2: the body */

regs.h.ah = (char)0x86;

regsj[.dx = (unsigned short)(0x0000ffff & us_delay);

regsj[.cx = (unsigned short)((0xffff0000 & us_delay) / 0x10000);

int86(0xl5,&regs,&regs);

r block 3: the postscript */

retum(cvfixnum((FIXNUM)us_delay));

}

The function xtimed\_wait is the C implementation of the undocumented amcore function

timed-wait. When this function is applied to an Integer argument, it returns after a delay of

that number of microseconds. Most C programmers will recognize that the intended effect of

the body of xtimed\_wait is to call ROM-BIOS Interrupt 15Hex, Sen/ice 86Hex. Other pieces of

this code in what I have called the preamble and postscript make use of constructs which are

defined in the implementation of amcore, and thus require some auxiliary explanations.

First, the function header says that xtimed\_wait as well as the arguments to which It is

applied are pointers to entities of this type. Second, the effect of the C functions xlmatch and

xllastarg In the remainder of block 1 is to obtain the C integer value within the amcore integer

NODE passed as an argument to timed-wait, and then to make sure that this argument is in

fact the last argument provided. One of the most important functions of the preamble is to

associate excavated C values with local C variables. In this instance, the single excavated
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value is assigned to the variable us\_delay. Third, the effect of the function cvfixnum in what I

have called the postscript is to create a integer NODE whose integer value is set to usWelay,

and then to return a pointer to the newly created NODE as the value of the function itself.

The function of the postscript block is to use the local variables introduced in the preamble to

construct the amcore NODE which represents the returned value of the function.

After the function has been prepared, only one more step remains, namely, the addition of

the function the amcore symbol table *obarray*. I call this step the AMPLE promotion of the

function.

B.4. RE-ENTRANT AMCORE AND SNAPSHOTS

Being able to take a snapshot of amcore means being able to restart amcore in the same

state even after exiting the system and returning to the MS-DOS level. The state of amcore

may be entirely specified by a list of all user-defined symbols and the value assigned to them.

This list, represented by the global variable *savelist*. Is created by the following function:

(defun make-savelist ()

(setq *savelist* nil)

(do* ((i 0 (1+ i)))

((= i 199) (terpri) T)

(setq *savelist*

(append *savelist* (symbol-filter (aref *obarray* i))))

))

The next function drops from savelist* all symbols known to be present whenever amcore is

operational. These symbols are of several kinds: symbols like unbound* which have exotic

properties and thus need extra work; special symbols. Including those used in amcore object

processing and those used as type indicators; and primitive function symbols. Primitive

symbols may be Identified as the only symbols which have the types :SUBR or :FSUBR. The

easiest way to deal with special symbols is place them in a special symbol table, and then to
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define a function special-symbol? which returns T if and only if its argument is a member of

that table. All symbols which do not fall in these categories are assumed to be user-defined

and should be added to *savelist*.

(defun symbol-filter (1)

(cond ((null 1) nil)

(T

(do ((sym (car l)(car 1))

(ret nil))

((null 1) ret)

(cond

((or

(equal (car 1) ’‘UNBOUND*)

(not (boundp sym))

(equal (type-of (eval sym)) ’:SUBR)

(equal (type-of (eval sym)) ’iFSUBR)

(special-symbol? sym)

)T)

(T

(setq ret (cons sym ret))))

(setq 1 (cdr 1))

)))

)

Once *savelist* has been created, the function save, which must be given a filename

argument, writes to that file all of the symbols in *savelist*.

(defun save (filename)

(setq *savelist* (cons ’*SAVELIST* *savelist*))

(do* ((fp (openo filename))

(sym (car *savelist*)(car *savelist*))

(plist (symbol-plist sym)(symbol-plist sym)))
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0

(princ (strcat "(setq ” (symbol-name sym)
"

”') fp)

(print (eval sym) fp)

(princ y fp)

(terpri fp)

(cond (plist

(princ (strcat

”(setf (symbol-plist

"

(symbol-name sym) ”) ’")

fp)

(print plist ^)

(princ ”)” fp)

(terpri fp)))

(setq *savelist* (cdr *savelist*))

(cond ((null *savelist*)(close ^)(retum T)))

))

The symbol *SAVELIST* is consed onto *savelist* because that allows us to open the file, do

one read operation, and see all of the symbols which the file contains. Having saved a

snapshot, the subsequent restoration of that same symbolic environment is accomplished by

LOADing the saved file into the new AMPLE session. For the user’s point of view, the effect

is the same as if ail of the functions had been re-keyed.
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